IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU	Pfähle der Ponton-Anlage	Seite 1 of 83

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage

Status	Ausgabe	Datum	Erstellt von	Geprüft von	Genehmigt von	Anmerkung
			Johnson	Tilegra	defoot	
Erste Ausgabe	00	20/02/2024	S. Berdenis van Berlekom	E. Meyer	J. de Groot	

Struktur

TES Proj. No.: TES-WHV-VGN

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

Page 2 of 83

Inhaltsverzeichnis

TES Code: TES-WHV-VGN-FSRU

1.	Einleitung4	
2.	Literatur5	
3.	Abkürzungen7	
4.	Zeichen8	
5.	Beschreibung des Bauwerks9	
6.	Allgemeine Ausgangspunkte10	
6.1	Bemessungslebensdauer	10
6.2	Aufprallstärken	10
6.3	Normen	10
6.4	Schadensfolgeklasse	10
6.5	Bemessungskonzept	11
6.6	Stahl	12
6.7	Korrosion	13
7.	Einwirkungen14	
7.1	Wellen, Wind und Strömung	14
7.2	Geotechnische Einwirkungen	22
8.	Modellierung	
8.1	Bestimmung der Pfahlreaktionskräfte	23
8.2	Bestimmung der Kräfte im Pfahlinneren	27
8.3	Pfahltiefe	29
8.4	Pfahlbemessungsnachweise	31
8.4.1	Abschnittsprüfung im Grenzzustand STR/GEO	31
8.4.1	SLS-Nachweis der Pfahleinspannung und ULS-Nachweis der Pfahlstabilität	51
8.4.2	Grenzzustand der Ermüdung	57

Struktur

TES Proj. No.: TES-WHV-VGN

TES Code: TES-WHV-VGN-FSRU

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

Page 3 of 83

8.4.3	Eiseinwirkung	64
9.	Ergebnisse	
9.1	STR/GEO-Ergebnisse und Grenzzustand der Ermüdung	66
9.2	Zusätzliche Analysen	67
9.2.1	Innerer Reibungswinkel φ = 32,5° (NieChar) für Schicht L5	68
9.2.2	STR/GEO-Grenzzustandsprüfung bei Niedrigwasser	68
9.2.3	Nachweis des Grenzzustands der Ermüdung bei Niedrigwasser	69
9.2.4	Effekt zweiter Ordnung aufgrund der Axialkraft	71
9.2.5	Gruppenwirkung	72
Anhar	ng A Ausgabe DMC-BLUM-Tabellenblatt75	
Anhar	ng B Ponton-Bewegungen76	
Anhar	ng C Geotechnische Parameter78	
Δnhar	ng C Beziehung Wiederkehrintervall. Wahrscheinlichkeit und Bemessungslehensdauer 81	

ECONNECT EXCELERATE ENERGY	Struktur	IMDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 4 of 83

1. EINLEITUNG

Für die FSRU Wilhelmshaven wird eine Not-Anlegestelle für den Evakuierungsfall benötigt. Sie muss zur Evakuierung des Personals zur Verfügung stehen, wenn die FSRU sich an der Anlegestelle befindet. Dieses Bauwerk besteht aus einem Ponton, der von 12 Pfählen gestützt wird und über eine Gangway von MD6 zugänglich sein soll.

Der Zweck des Pontons besteht darin, den Zugang unter normalen/betriebsüblichen Bedingungen und bei Notfällen (Zugang sowohl z. B. für die Feuerwehr als auch zum Ablegen durch die FSRU-Crew) zu ermöglichen.

Ziel dieses Hinweises zur technischen Bemessung (Technical Design Note) ist die Konzeption der Führungspfähle der Ponton-Anlage.

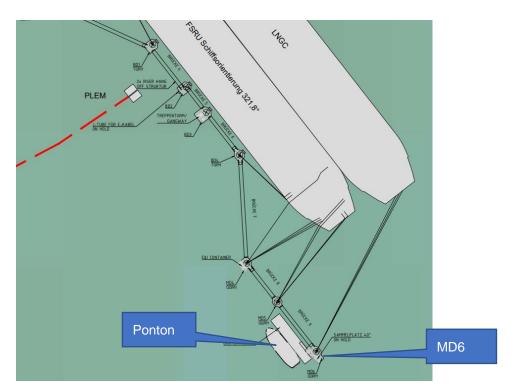
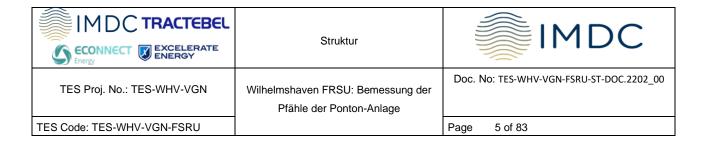
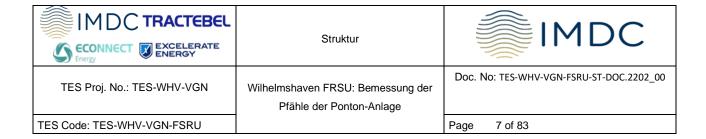



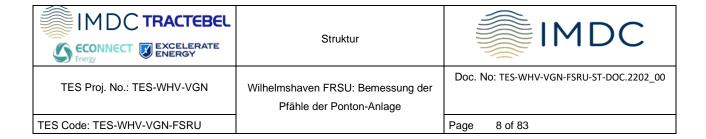
Abbildung 1 Südöstlicher Teil der FSRU-Vertäuungsanlage mit Ponton-Anlage zwischen MD4 und MD6



2. LITERATUR

- [1] Bemessungsgrundlage Wilhelmshaven Schwimm-Ponton (BoD Wilhelmshaven Floating pontoon)
- [2] DMC-230704-M-00019-MP Ponton-Bewegungsanalyse
- [3] EN-1990 Eurocode 0: Grundlagen der Tragwerksplanung. DS-EN 1990, Dezember 2011.
- [4] EN-1991 Eurocode 1: Einwirkungen auf Tragwerke. DS-EN 1991, Dezember 2011.
- [5] EN-1993-1-1 Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau DS-EN 1993, Dezember 2016.
- [6] EN-1993-5 Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 5: Pfähle und Spundwände, Februar 2008
- [7] EN-1993-1-6 Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-6: Allgemein Festigkeit und Stabilität von Schalen
- [8] EN-1993-1-9 Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-9: Ermüdung
- [9] EN-1997-1 Eurocode 7: Geotechnische Bemessung Teil 1: Allgemeine Regeln
- [10] NEN 9997-1 Niederländische Norm: Geotechnische Bemessung von Bauten Teil 1: Allgemeine Regeln
- [11] NEN-EN 10025-2 Warmgewalzte Erzeugnisse aus Baustählen Teil 2: Technische Lieferbedingungen für unlegierte Baustähle
- [12] NEN-EN 10025-3 Warmgewalzte Erzeugnisse aus Baustählen Teil 3: Technische Lieferbedingungen für normalgeglühte/normalisierend gewalzte Feinkornbaustähle
- [13] DNV-OS-C101, Design of offshore steel structures general (LRFD method) (Allgemeine Bemessung von Offshore-Bauwerken aus Stahl (LRFD-Verfahren)), Oktober 2008.
- [14] DNV-RP-C203 Fatigue design of offshore steel structures (Bemessung der Ermüdung von Offshore-Bauwerken aus Stahl), Geänderte Fassung September 2021.
- [15] DNV-OS-C401 Rules and standards for offshore units (Regeln und Normen für Offshore-Einheiten), Juli 2023.
- [16] Geotechnischer Bericht. Teilprojekt: Bootsanleger (Ponton) Nr. 23A012.00.00 Rev.0.0 12. Dezember 2023, Anlage 3 Rechnerische Bodenprofile für erdstatische Berechnungen.
- [17] Ergebnisse der in Aug/Sept 2023 ausgeführten CPT-Drucksondierungen und der Bohrung BH1 (Bohrprofil, Sondierdiagramme, CPT-ASCII-Daten), LANKELMA, bereitgestellt durch IMDC, 12.09.2023
- [18] DIN 4085:2017-8 Baugrund Berechnung des Erddrucks
- [19] Empfehlungen des Arbeitsausschusses "Ufereinfassungen" Hafen und Wasserstraßen (EAU 2022) 12.2.5.2 Ansatz nach Blum
- [20] Vergleichsberechnungen zur Dalbenbemessung nach Blum und mit der p-y-Methode, Christina Rudolph et al. Fachthemen DOI: 10.1002/gete.201100006

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 6 of 83


- [21] SBRCURnet Publication C206 Flexible Dolphins Committee (Ausschuss zu flexiblen Dalben) 1720
- [22] SBRCURnet Publication 211E Quay walls (Kajenwände) Zweite Ausgabe
- [23] Accelerated Low Water Corrosion Report of Working Group 44 of the Maritime Navigation Commission (Beschleunigte Korrosion bei Niedrigwasser Bericht von Arbeitsgruppe 44 der Seeschifffahrtskommission) PIANC
- [24] Shore Protection Manual (Handbuch zum Küstenschutz) DEPARTMENT OF THE ARMY Waterways Experiment Station, US Corps of Engineers.
- [25] Einspannungsverhältnisse bei Bohlwerken H. Blum Berlin 1931

3. ABKÜRZUNGEN

Abkürzung	Definition
EEB	Not-Anlegestelle für den Evakuierungsfall (Emergency Evacuation Berth)
SKN*	Seekartennull
ALS	Außergewöhnlicher Grenzzustand (Accidental Limit State)
ULS	Grenzzustand der Tragfähigkeit (Ultimate Limit State)
SLS	Grenzzustand der Gebrauchstauglichkeit (Serviceability Limit State)
FLS	Grenzzustand der Ermüdung (Fatigue Limit State)
DFF	Bemessungsspezifischer Ermüdungsgrad (Fatigue Damage Factor)
BD	Grundaufbau (Basic Design)
BoD	Bemessungsgrundlage (Basis of Design)
CC2	Schadensfolgeklasse 2 (Consequence Class 2)
CC3	Schadensfolgeklasse 3 (Consequence Class 3)
CPT	Drucksondierung (Cone Penetration Test)
DA	Bemessungskonzept (Design Approach)
DD	Ausführungsplanung (Detailed Design)
FEM	Finite-Elemente-Methode (Finite Element Method)
MBL	Mittlere Bruchlast (Mean Breaking Load)
SWL	Traglast (Safe Working Load)
UC	Einheitsnachweis (Unity Check)
SBL	Meeresbodenhöhe (Sea Bed Level)
COG	Schwerpunkt (Center of Gravity)
HW	Hochwasser
LW	Niedrigwasser (Low Water)
TDN	Hinweis zur technischen Bemessung (Technical Design Note)

^{*} In der offenen Nordsee orientiert sich das SKN am niedrigsten Gezeitenwasserstand (Lowest Astronomical Tide; LAT). In den tidebeeinflussten Flüssen wird das SKN gesondert festgesetzt.

4. ZEICHEN

γε Beiwert für den Einfluss einer Einwirkung

γ_F Beiwert für eine Einwirkung

γ_G Beiwert für eine Dauereinwirkung

γ_{R;e} Beiwert für den Erdwiderstand

γQ Beiwert für eine veränderliche Einwirkung

T Tiefe [m]
B Breite [m]
L Länge [m]

D Pfahldurchmesser [mm]

t Wanddicke [mm]

ECONNECT EXCELERATE ENERGY	Struktur	IMDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 9 of 83

5. BESCHREIBUNG DES BAUWERKS

Abbildung 2 zeigt eine Draufsicht der Anlegestelle für den Zugang. Die Anlegestelle besteht aus folgenden Elementen:

- Schwimm-Ponton mit den allgemeinen Abmessungen L x B x T = 67,00 m x 18,00 m x 4,53 m und mindestens 2,23 m Freibord.
- 12 Führungspfähle D × t = 1.500×50 mm mit L = 44 m
- Gangway von rund 40 m vom Vertäudalben MD6 auf den Ponton

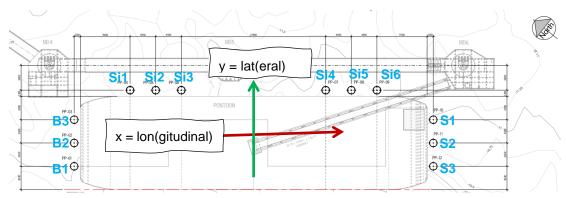


Abbildung 2 Schematische Draufsicht der Anlegestelle für den Zugang, B = Bug, S = Heck, Si = Seite

Abbildung 3 3D-Entwurf der Ponton-Anlage

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 10 of 83

6. ALLGEMEINE AUSGANGSPUNKTE

6.1 Bemessungslebensdauer

Nach [1] beträgt die Bemessungslebensdauer 10 Jahre.

6.2 Aufprallstärken

Der Ponton überträgt die Vertäukräfte ungefähr auf der Höhe des Decks. Folgende Aufprallstärken wurden berücksichtigt:

1/T	Starker Umsetzunç	Aufprall gen)	(maximale	Schwacher Aufprall (maximale Kraft)
1/10	6,40 + 2,20	0 = 8,60 m		-0,71 + 2,20 = 1,49 m
1/100	7,16 + 2,20	0 = 9,36 m		-1,03 + 2,20 = 1,17 m

Tabelle 1 Extremwasserstände bei Bedingungen mit einer Jährlichkeit von 1/10 und 1/100 (siehe auch [1])

6.3 Normen

Die Bemessung der Pfähle wird, nach den EAU [19] in Verbindung mit den Eurocodes, mit dem deutschen NA erfolgen. Siehe auch [1]. Gegebenenfalls wurden andere Normen herangezogen, etwa diejenigen der DNV.

6.4 Schadensfolgeklasse

Die EAU-Empfehlungen sprechen nicht ausdrücklich von Schadensfolgeklassen. Die in ihnen benannten Sicherheitsbeiwerte und Materialfaktoren, die für die Bemessung zu verwenden sind, stehen jedoch im Einklang mit Schadensfolgeklasse 2. Siehe auch [1].

ECONNECT EXCELERATE ENERGY	Struktur	IMDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 11 of 83

6.5 Bemessungskonzept

2.4.7.3.4.3 Design Approach 2

(1)P It shall be verified that a limit state of rupture or excessive deformation will not occur with the following combination of sets of partial factors:

Combination: A1 "+" M1 "+" R2

NOTE 1 In this approach, partial factors are applied to actions or to the effects of actions and to ground resistances.

NOTE 2 If this approach is used for slope and overall stability analyses the resulting effect of the actions on the failure surface is multiplied by $\gamma_{\rm E}$ and the shear resistance along the failure surface is divided by $\gamma_{\rm R;e}$.

2.4.7.3.4.3 Design Approach 2	2.4.7.3.4.3 Bemessungskonzept 2	
(1)P It shall be verified that a limit state of rupture or excessive deformation will not occur with the following combination of sets of partial factors:		
Combination: A1 "+" M1 "+" R2	Kombination: A1 "+" M1 "+" R2	
NOTE 1 In this approach, partial factors are applied to actions or to the effects of actions and to ground resistances.	HINWEIS 1 Bei diesem Ansatz werden Beiwerte auf Einwirkungen bzw. deren Auswirkungen sowie auf Erdwiderstände angewendet.	
NOTE 2 If this approach is used for slope and overall stability analyses the resulting effect of the actions on the failure surface is multiplied by and the shear resistance along the failure surface is divided by γ R;e.	HINWEIS 2 Falls dieser Ansatz bei Böschungs- und Gesamtstabilitätsanalysen zum Einsatz kommt, wird die resultierende Auswirkung der Einwirkungen auf die Bruchfläche mit γ_E multipliziert; ebenso wird der Schubwiderstand entlang der Bruchfläche durch γ R;e dividiert.	

<u>Tab.</u> <u>12.1</u> Teilsicherheitsbeiwerte für den Nachweis der Grenztragfähigkeit von Dalben.

	Einwirkungen	Widerstände Boden	Stahl
	γQ	$\gamma_{R,e}$	$\gamma_{\mathbf{M}}$
Lasten aus Anlegemanövern	1,00	1,00	1,00
Vertäukräfte (Trossenzug) und Anlehnkräfte	1,20	1,15	1,10
Kräfte aus Wellen, Wind und Strömung	1,20	1,15	1,10
Eislasten (siehe auch Abschn. <u>4.12</u>)	1,00	1,10	1,10

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 12 of 83

6.6 Stahl

Desig	nation	Minimum yield strength $R_{ m eH}$ $^{ m a}$								
			MPa							
					Nom	inal thic	kness			
	٠			١		mm				
Steel name	Steel number	≤ 16	> 16 ≤ 40	> 40 ≤ 63	> 63 ≤ 80	> 80 ≤ 100	> 100 ≤ 150	> 150 ≤ 200	> 200 ≤ 250	> 250 ≤ 400
S235JR	1.0038									
S235J0	1.0114	235	225	215	215	215	195	185	175	165
S235J2	1.0117									
S275JR	1.0044									
S275J0	1.0143	275	265	255	245	235	225	215	205	195
S275J2	1.0145									
S355JR	1.0045									
S355J0	1.0553	355	345	335	325	315	295	285	275	265
S355J2	1.0577	333	343	333	323	313	293	203	2/3	203
S355K2	1.0596									
S460JR b	1.0507									
S460J0 b	1.0538	460	440	420	400	200	390			
S460J2 b	1.0552	460	440	420	400	390	390			-
S460K2 b	1.0581									
S500J0 b	1.0502	500	480	460	450	450	450	-	-	-

Designation	Bezeichnung	
Steel name	Stahlbez.	
Steel number	Stahl-Nr.	
Minimum yield strength ^R eH ^a	Min. Streckgrenze ReH ^a	
MPa	MPa	
Nominal Thickness	Nenndicke	

Abbildung 5 Tabelle 6 Mechanische Eigenschaften aus Ref. [11]

Econnect Energy	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 13 of 83

Design	nation	Minimum yield strength R _{eH} ^a MPa Nominal thickness mm							
Steel name	Steel number	≤ 16	>16 ≤ 40	>40 ≤ 63	> 63 ≤ 80	> 80 ≤ 100	> 100 ≤ 150	> 150 ≤ 200	> 200 ≤ 250
S275N	1.0490	275	265	255	245	225	225	215	205
S275NL	1.0491	275	265	255	245	235	225	215	205
S355N	1.0545	255	245	225	225	215	205	285	275
S355NL	1.0546	355	345	335	325	315	295	285	275
S420N	1.8902	420	400	390	370	360	340	330	320
S420NL	1.8912	420	400	390	370	300	540	530	320
S460N	1.8901	460	440	420		410 400	400 200	270	270
S460NL	1.8903	400	440	430	410	400	380	370	370

Designation	Bezeichnung	
Steel name	Stahlbez.	
Steel number	Stahl-Nr.	
Minimum yield strength ^R eH ^a	Min. Streckgrenze R _{eH} ^a	
MPa	MPa	
Nominal Thickness	Nenndicke	

Abbildung 6 Tabelle 4 Mechanische Eigenschaften aus Ref. [12]

6.7 Korrosion

Korrosionszuschlag gemäß [1].

ECONNECT EXCELERATE ENERGY	Struktur	IMDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 14 of 83

7. EINWIRKUNGEN

7.1 Wellen, Wind und Strömung

Der Seegang wurde mit der Software Ansys AQWA bei verschiedenen Wiederkehrintervallen analysiert. Ansys AQWA bestimmt die Kräfte auf den Rumpf des in das Wasser eingetauchten Teils des Pontons nach der linearen Wellentheorie. Nähere Einzelheiten siehe Ref. [2].

Die direkten Wellen- und Strömungskräfte, die auf die Pfähle einwirken, sind in diesem Modell jedoch nicht enthalten. Zur Bestimmung der Wellen- und Strömungskräfte auf die Pfähle wurde eine Methode ausgewählt, die eine Vereinfachung der Morison-Gleichung darstellt. Siehe Abbildung 7 und

F _{max}	F _{max}	
M _{max}	M _{max}	
where:	wobei Folgendes gilt:	
C₁ [-] = inertia coefficient ≈ 2,0	C _I [–] = Trägheitskoeffizient ≈ 2,0	
C_D [-] = drag coefficient (for small flow velocities $C_D \approx 1,2$, see Section 20.3)	C_D [–] = Strömungswiderstandskoeffizient (bei geringen Fließgeschwindigkeiten $C_D \approx 1, 2$, siehe Abschnitt 20.3)	
K _i [-] = correction for extent of inertia force	K _I [–] = Korrekturfaktor für Trägheitskraftmaß	
$K_{\mathbb{D}}$ [-] = correction for extent of drag force	K _D [−] = Korrekturfaktor für Strömungswiderstandsmaß	
S_{I} [-] = correction for position of resultant inertia force	S _I [–] = Korrekturfaktor für Position der resultierenden Trägheitskraft	
S_D [-] = correction for position of resultant drag force	S_D [-] = Korrekturfaktor für Position der resultierenden Strömungswiderstandskraft	
H [m] = wave height	H[m] = Wellenhöhe	
D [m] = diameter pile	D [m] = Pfahldurchmesser	
d [m] = depth	d[m] = Tiefe	

Abbildung 8.

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 15 of 83

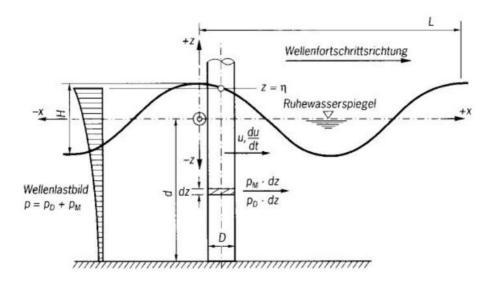


Abbildung 7 Welleneinwirkung auf ein schlankes Bauwerk

ECONNECT EXCELERATE ENERGY	Struktur	IMDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 16 of 83

```
F_{\text{max}} = F_{\text{I}} + F_{\text{D}} = C_{\text{I}} K_{\text{I}} H \rho g \frac{\pi D^2}{4} + C_{\text{D}} K_{\text{D}} H^2 \frac{1}{2} \rho g D
            M_{\text{max}} = F_I dS_I + F_D dS_D
                              = inertia coefficient ≈ 2.0
where: C<sub>1</sub>
                    [-]
                              = drag coefficient (for small flow velocities C_D \approx 1.2, see Section 20.3)
           C<sub>D</sub> K<sub>1</sub> K<sub>D</sub> S<sub>1</sub> S<sub>D</sub> H D
                     [-]
                              = correction for extent of inertia force
                              = correction for extent of drag force
                              = correction for position of resultant inertia force
                              = correction for position of resultant drag force
                    [-]
                              = wave height
                     [m]
                              = diameter pile
                     [m]
```

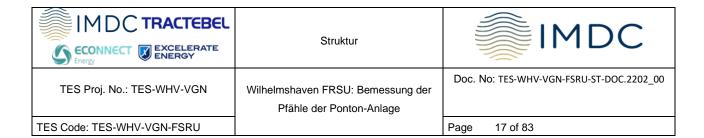

F _{max}	F _{max}	
M _{max}	M _{max}	
where:	wobei Folgendes gilt:	
C₁ [-] = inertia coefficient ≈ 2,0	C _I [–] = Trägheitskoeffizient ≈ 2,0	
C_D [-] = drag coefficient (for small flow velocities $C_D \approx 1,2$, see Section 20.3)	C_D [–] = Strömungswiderstandskoeffizient (bei geringen Fließgeschwindigkeiten $C_D \approx 1, 2$, siehe Abschnitt 20.3)	
K_{l} [-] = correction for extent of inertia force	$K_{I}[-]$ = Korrekturfaktor für Trägheitskraftmaß	
K_D [-] = correction for extent of drag force	$K_{\mathcal{D}}[-]$ = Korrekturfaktor für Strömungswiderstandsmaß	
S_{I} [-] = correction for position of resultant inertia force	$S_{I}[-]$ = Korrekturfaktor für Position der resultierenden Trägheitskraft	
S_D [-] = correction for position of resultant drag force	S_D [–] = Korrekturfaktor für Position der resultierenden Strömungswiderstandskraft	
H [m] = wave height	H[m] = Wellenhöhe	
D [m] = diameter pile	D[m] = Pfahldurchmesser	
d [m] = depth	d[m] = Tiefe	

Abbildung 8 Lineare Wellentheorie

Das "Shore Protection Manual" (CERC 1984) zeigt Diagramme mit den Höchstwerten der Koeffizienten C_D, K_I, K_D, S_I und S_D. Diese Diagramme sind auch in den nachstehenden Abschnitten enthalten. Die Werte der Koeffizienten richten sich nach der Wellenperiode, der Phase, der Wassertiefe sowie der zur Bestimmung der Geschwindigkeit der Wasserpartikel anwendbaren Wellentheorie.

Die Diagramme zeigen mehrere unterschiedliche Kurven. (Siehe Ref. [24].) Diese sind abhängig vom Verhältnis H/Hb, wobei Hb die Wellenhöhe im Brechpunkt ist. Bei einer konventionellen Schätzung der Wellenhöhe im Brechpunkt wird 1/7 der Wellenlänge im Flachwasser angenommen. In diesem Bericht wurde als konservativer Wert H/Hb = 1 gewählt, was für K_I , K_D , S_I und S_D die höchsten Werte ergibt.

Folgende Komponenten wurden für die Berechnung herangezogen:

Genera	l input						
g	Gravitation					9.81	[m/s2]
T	Temperature					2.00	[°C]
	Kinematic visco	sity				1.67E-06	[m2/s]
γW	Density of sea v	vater				1030	[kg/m3
S	Safety factor for	simplified	calculation			1.10	[-]
Environ	mental input						
umax	Current velocity					1.88	[m/s]
Тр	Wave period					5.20	[s]
Hs	Significant wave	height (a	verage heigh	t of the 1/3 h	ighest waves)	3.78	[m]
Hb	Wave height wh	en breakii	ng (individual	waves)	1/7*L =	5.6	[m]
L0	Wave length					42.2	[m]
d/L0	Relative water d	epth	[-] (intermed	iate water de	epth)	0.24	[-]
L	Wave length acc	cording to	linear wave t	theory, exac	t to 3 decimals	39.0	[m]
Geome	etric input						
d	Water depth					10.0	[m]
D	Diameter of the	pile				1.400	[m]
HA	Height of area fa	cing flow				8.0	[m]

TIA Treight of area facility flow	0.0 [111]
General input	Allgemeine Eingaben
General input	Allgemeine Eingaben
Gravitation	Erdbeschleunigung
Temperature	Temperatur
Kinematic viscosity	Kinematische Viskosität
Density of sea water	Meerwasserdichte
Safety factor for simplified calculation	Sicherheitsbeiwert für vereinfachte Berechnung
Environmental input	Eingaben zu Umgebungsdaten
Current velocity	Strömungsgeschwindigkeit
Wave period	Wellenperiode
Significant wave height (average height of the 1/3 highest waves)	Maßgebliche Wellenhöhe (Mittelwert aus 1/3 der höchsten Wellen)
Wave height when breaking (individual waves)	Wellenhöhe beim Brechen (Einzelwellen)
Wave length	Wellenlänge
Relative water depth [-] (intermediate water depth)	Relative Wassertiefe [–] (mitteltiefes Wasser)
Wave length according to linear wave theory, exact to 3 decimals	Wellenlänge gemäß linearer Wellentheorie, auf 3 Dezimalstellen genau
Geometric input	Geometrische Eingaben
Water depth	Wassertiefe
Diameter of the pile	Pfahldurchmesser
Height of area facing flow	Höhe des strömungszugewandten Bereichs

Abbildung 9 Allgemeine Komponenten vereinfachte Morison-Gleichung

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 18 of 83

Folgende Faktoren wurden anhand der Tabellen aus dem Rock Manual bestimmt:

Factor	<u>s</u>		
CI	inertia coefficient	2.00	[-]
Re	Renolds number	1.6E+06	[-]
d/gT2	Horizontal axis in graph Shore Protection Manual	3.77E-02	
H/Hb	Ratio of design wave/breaking wave	7/10	[-]
TABLE	S ROCK MANUAL		
CD	Drag coefficient	0.70	[-]
KI	Correction for extend of inertia force	0.45	[-]
KD	Correction for extent of drag force	0.50	[-]
SI	Correctionf for position of resultant inertia force	0.82	[-]
SD	Correctionf for position of resultant drag force	1.10	[-]

Factors	Faktoren
inertia coefficient	Trägheitskoeffizient
Renolds number	Reynolds-Zahl
Horizontal axis in graph Shore Protection Manual	Horizontale Achse im Diagramm in "Shore Protection Manual"
Ratio of design wave/breaking wave	Verhältnis von Bemessungswelle/brechende Welle
TABLES ROCK MANUAL	TABELLEN ROCK MANUAL
Drag coefficient	Strömungswiderstandskoeffizient
Correction for extend of inertia force	Korrekturfaktor für Trägheitskraftmaß
Correction for extent of drag force	Korrekturfaktor für Strömungswiderstandsmaß
Correction for position of resultant inertia force	Korrekturfaktor für Position der resultierenden Trägheitskraft
Correction for position of resultant drag force	Korrekturfaktor für Position der resultierenden Strömungswiderstandskraft

Abbildung 10 Faktoren Rock Manual

Struktur



TES Proj. No.: TES-WHV-VGN

TES Code: TES-WHV-VGN-FSRU

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

Page 19 of 83

Achenboch (1968)	Achenbach (1968)
Lab.	Labor
Thirriot ef al. (1971)	Thirriot et al. (1971)
Field	Feld
Keulegan and Carpenter (1956)	Keulegan und Carpenter (1956)
Bretshneider (1957), Airy Theory	Bretschneider (1957), Wellentheorie nach Airy
Dean and Aagaard (1970), Stream Function	Dean und Aagaard (1970), Stromfunktion
Evans (1970), Nonlinear Theory	Evans (1970), Nichtlineare Theorie
Wiegel et al. (1957), Airy Theory	Wiegel et al. (1957), Wellentheorie nach Airy
Agerschou and Edens (1965), Stokes 5th	Agerschou und Edens (1965), Stokes' 5. Ordnung
Full Line Recommended for Design	Durchzogene Linie für Bemessung empfohlen
Fage and Warsap	Fage und Warsap
Dashed Lines from Steady-State Experiments, Achenbach (1968)	Gestrichelte Linien aus stationären Experimenten, Achenbach (1968)
Roshko (1961)	Roshko (1961)
Wiesselberger	Wieselsberger

Abbildung 11 Bestimmung des Strömungswiderstandskoeffizienten

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 20 of 83

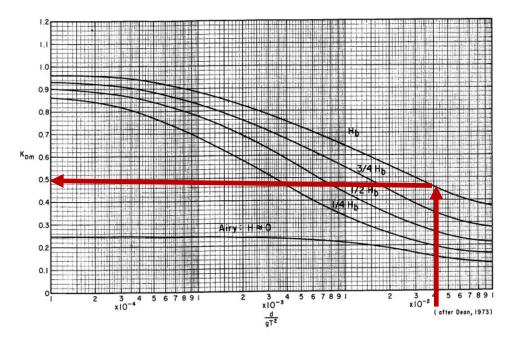
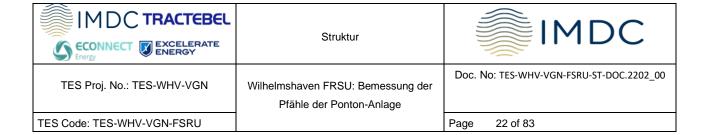


Abbildung 12 Bestimmung des K_□-Faktors (Berichtigung des Umfangs der Strömungswiderstandskraft)

Auf dieser Grundlage lassen sich die auf die Strömung und die Trägheit zurückzuführenden Widerstandskräfte bestimmen. Zur Berechnung des Maximalmoments wurde der vertikale Abstand zwischen dem Meeresboden und dem Einspannungspunkt zu den Hebeln dieser Kräfte hinzugezählt. Dieser Abstand wurde mit $0.22 \times 10 = 0.22 \times 10.59 = 2.33$ m angenommen.

FI	Drag force due to inertia	52.9	[kN]
FD	Drag force due to current	35.4	[kN]
Mmax	Maximum moment @ -13.11 [mSKN]	2178	[kNm]

Drag force due to inertia	Strömungswiderstandskraft infolge Trägheit
Drag force due to current	Strömungswiderstandskraft infolge Strömung
Maximum moment @ -19.11 [mSKN]	Maximales Moment bei −19,11 [m SKN]
Mmax	Mmax

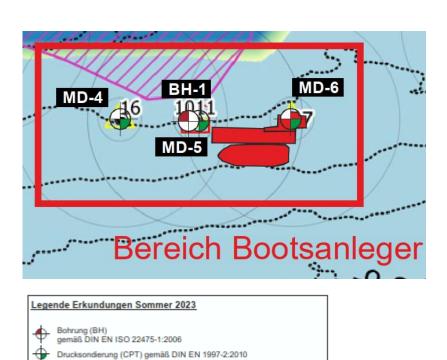

Abbildung 13 Kräfte und Maximalmoment Pfahl unter Wellen- und Strömungseinwirkung

In der Pfahlberechnung wurde die Kraft bei einem schwachen Aufprall von 1.167 kN (siehe Abschnitt 8.4.1) erhöht, bis ein zusätzliches maximales Biegemoment von 2.178 kNm entsteht. Das maximale Biegemoment erhöht sich dadurch um 10 %. Für den Grenzzustand der Ermüdung wurde eine Erhöhung gleichen Umfangs angenommen.

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 21 of 83

Die Berechnung enthält wohlgemerkt konservative Betrachtungen. Diese sind beabsichtigt, um ein Unterschätzen der Belastung zu vermeiden.

- Schirmwirkungen des Pontons werden außer Acht gelassen.
- Es wurde ein (selbst erfundener) Gesamtfaktor von 1,10 auf das Maximalmoment verwendet.
- Es wird argumentiert, dass die Strömung die Richtung nicht schnell wechselt wie die unter den Wellen schwankenden Pfähle. Anzunehmen, dass sie dies tut, ist für den Grenzzustand der Ermüdung konservativ.


7.2 Geotechnische Einwirkungen

Das Bodenprofil und die Bodenparameter entstammen Anlage 3, "Rechnerische Bodenprofile für erdstatische Berechnungen" aus Ref. [16].

In diesem Anhang werden zwei Profile angegeben.

- 1. FSRU Ponton-Dalben ohne Kolkschutzschüttung (pontoon dolphins w/o armor layer), Rechnerische Wassertiefe (DSL): −10,80 [m SKN]. Es wird angenommen, dass dieses Profil von BH-1 stammt.
- 2. FSRU Ponton-Dalben mit Kolkschutzschüttung (pontoon dolphins w/ armor layer), Rechnerische Wassertiefe (DSL): –9,80 [m SKN]. Es wird angenommen, dass dieses Profil von MD6 stammt.

Das erste Profil wird für maximale Flexibilität bei starkem Aufprall verwendet, unter Hinzuziehung eines Kolks von ca. 1 x D m. Das zweite Profil wird für maximale Kraft bei schwachem Aufprall mit Kolkschutzschüttung verwendet.

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 23 of 83

8. MODELLIERUNG

8.1 Bestimmung der Pfahlreaktionskräfte

Der Ponton wird durch 12 Pfähle gehalten. Im Ansys-AQWA-Modell wird jeder Pfahl durch 4 reine Druckstützen dargestellt. Zwei senkrecht zum Ponton in je entgegengesetzter Richtung und zwei parallel zum Ponton in je entgegengesetzter Richtung. Somit kann jeder Pfahl als Einzelnes Versetz- und Schnellbewegungen standhalten. Das Pfahlsystem als Ganzes kann Gieren standhalten. Tauchen, Stampfen und Rollen haben keinen wesentlichen Einfluss auf die Bemessung der Pfähle. (Siehe Anhang B hinsichtlich dieser Bewegungen.)

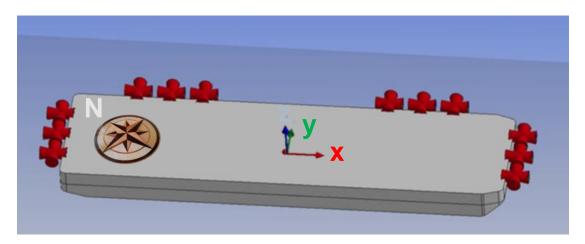
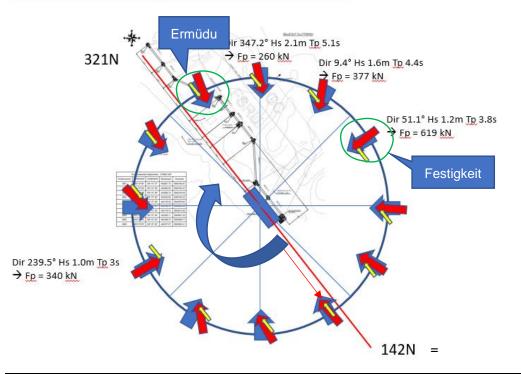


Abbildung 14 Pfahlmodellierung in Ansys AQWA als 12 x 4 reine Druckstützen


Die Wellenrichtungen, die die höchsten Reaktionskräfte erzeugen, wurden ermittelt, indem 12 Richtungen bei jeweiliger Pfahlsteifigkeit von 9.224 kN/m sowohl für extremes Niedrigwasser als auch für extremes Hochwasser geprüft wurden. In

Pontoon orientation 100 year RP - Low water	Ponton-Ausrichtung T = 100 – Niedrigwasser
1 ontoon one manor 100 year 11 Low water	1 Onton 7 tushentang 1 = 100 Tricangwasser

Abbildung 15 wurden die Kräfte für 4 Richtungen und für schwache Aufprallstärke gezeigt, einschließlich der dominierenden Kraftrichtung 51,1°N. Die Abbildung soll zur Veranschaulichung dienen. Zu beachten ist, dass die Richtungen relativ zum Norden angegeben sind, sowie auch, dass die Windrichtung und die Windwellenrichtung leicht voneinander abweichen können. Die positive Längsachse x des Pontons zeigt auf 141,75° Nord. Die positive Längsachse in Ansys AQWA ist definiert als 0°. Daraus folgt z. B. 51,1°N = 360 - (180 – 141,75 + 51,1) = 321,75 – 51,1 = 270,65° AQWA.

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 24 of 83

Pontoon orientation 100 year RP - Low water

Pontoon orientation 100 year RP - Low water	Ponton-Ausrichtung T = 100 – Niedrigwasser
---	--

Abbildung 15 Pfahlreaktionskräfte für 12 Windrichtungen bei extremem Niedrigwasser bei 9.224 kN/m.

Für den Grenzzustand der Ermüdung lautet die vorherrschende Wellenrichtung 340 N [GR]. Dies wurde in Ref. [1] Revision 2 erläutert.

Tabelle 2 zeigt die vorherrschenden Wind- und Wellenrichtungen für STR/GEO und den Grenzzustand (LS) der Ermüdung.

1/Т	LS	DirN [GR]	DirAnsys [GR]
		Wind / Wellen	Wind / Wellen
1/10	Ermüdung	330 / 340	-8 / -18
1/100	STR/GEO	60 / 51	262 / 271

Tabelle 2 Vorherrschende Wind- und Wellenrichtungen

ECONNECT EXCELERATE ENERGY	Struktur	IMDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 25 of 83

Zur Ermittlung der Reaktionskräfte im Grenzzustand STR/GEO (T = 100) sowie des Spannungsbereichs im Grenzzustand der Ermüdung (T = 10) wurden Kraftverschiebungskurven bezüglich der Steifigkeit der Pfähle bei Extremhochwasser und Extremniedrigwasser erstellt. Diese Kurven werden mithilfe einer internen Berechnungsdatei erstellt, die nachfolgend als "DMC-Blum-Tabellenblatt" bezeichnet wird. Siehe

Llieb Impost	Starker Aufprall
High Impact	Starker Aulpraii
Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
OHNE	OHNE
Low	Niedrig
LowChar	NieChar
Frep [kN]	Frep [kN]
Force in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

Abbildung 20,

Low Impact	Starker Aufprall
Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
Frep [kN]	F _{rep} [kN]
Force in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

Abbildung 21,

Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
MIT	MIT

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 26 of 83

High	Hoch
HiChar	HoChar
Frep [kN]	F _{rep} [kN]
Froce in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

Abbildung 28 und

Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
OHNE	OHNE
Low	Niedrig
LowChar	NieChar
Frep [kN]	F _{rep} [kN]
Froce in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

Abbildung 29.

Tabelle 3 zeigt die Eingabeparameter für Ansys AQWA in den berücksichtigten Grenzzuständen. Die Zahlenwerte wurden aus Ref. [1] übernommen.

- Hs ist die maßgebliche Wellenhöhe (Mittelwert aus 1/3 der höchsten Wellen)
- Tp ist die Wellenkammperiode
- Gamma-Faktor für das Wellenspektrum

1/T	LS	Hs [m]	Tp [s]	Gamma [–]
1/10	Ermüdung	1,70	4,9	2,1
1/100	STR/GEO	1,20	3,8	3,3

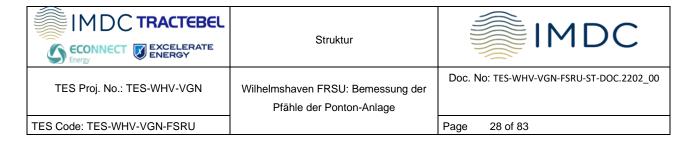
Tabelle 3 Ansys-Eingabe für Bedingungen mit einer Jährlichkeit von 1/10 und 1/100 (siehe auch [2])

Es wurden Ansys-AQWA-Durchläufe mit der Eingabe aus Tabelle 3 und den Steifigkeitsbereichen von starkem bis schwachen Aufprall für beide Grenzzustände ausgeführt. Anschließend wurden Spitzenwerte der Systemantwort bei bestimmten Steifigkeiten untersucht. Das Ergebnis ist ein Schaubild mit der Pfahlsteifigkeit

Econnect Energy	Struktur	IMDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 27 of 83

in kN/m auf der horizontalen Achse und der Reaktionskraft (STR/GEO) in kN oder dem Reaktionskraftbereich (Ermüdung) in kN auf der vertikalen Achse. Siehe

Results pile forces at varying stiffness, Hs = 1.1m, dir = "beam on"	Ergebnisse auf Pfähle einwirkende Kräfte bei versch. Steifigkeit, Hs = 1,1 m, Richtung = "dwars"
Total maximum pile force in [kN]	Max. auf Pfahl einwirkende Kraft in [kN]
Pile stiffness in kN/m	Pfahlsteifigkeit in kN/m


Abbildung 22 und

Pile forces in kN	Auf Pfähle einwirkende Kräfte in kN
Stiffness of pile supports in kN/m	Steifigkeit der Führungspfähle in kN/m

Abbildung 32.

8.2 Bestimmung der Kräfte im Pfahlinneren

Die Pfähle wurden gemäß Ref. [19] und [20] mithilfe des Verfahrens nach Blum bemessen. In seiner einfachsten Form geht das Blum-Verfahren von einer vollständigen Mobilisierung des Erddrucks eines Bodentyps für eine Spundwand aus, wie in Abbildung 16f dargestellt. Das ursprüngliche Verfahren wurde für im oberen Bereich gestützte Spundwände entwickelt. Das horizontale Gleichgewicht wird durch eine theoretische horizontale Kraft am Spundwandfuß gewährleistet. Das Blum-Verfahren ist ein kräfteorientierter Ansatz. Aus dem statischen Gleichgewicht werden die Schnittgrößen Querkräfte und Biegemoment hergeleitet. In dem DMC-Blum-Tabellenblatt wurde dies numerisch durch Berücksichtigung des Gleichgewichts von Pfahlquerschnitten mit Δh = 1 cm von oben nach unten durchgeführt.

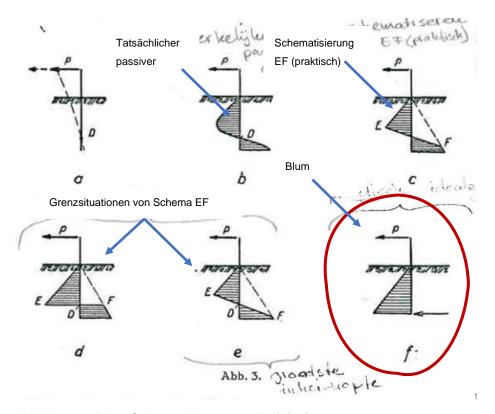


Abbildung 16 Blum-Schematisierung aus Ref. [25]

Das Blum-Verfahren wurde für flexible Dalben angepasst. Hierzu wurden zahlreiche Bodenschichten und Faktoren (Formbeiwerte) eingeführt, die die räumliche Wirkung vom Erddruck auf kreisförmige Querschnitte berücksichtigen. An der Stelle, an der das Biegemoment gegen Null geht (M=0), wird eine Kraft angenommen, die das horizontale Gleichgewicht herstellt. Diese Kraft trägt das Symbol C und wird als "Ersatzkraft" bezeichnet. Die Gesamtpfahltiefe beträgt $t_0 + \Delta t$. Dabei gibt t_0 den Abstand zwischen der Bodenoberkante und der Höhe M=0 in Metern an und Δt steht für die geforderte Tiefe unter der Höhe M=0. In Ref. [19]wird Δt wie in Abbildung 18 dargestellt berechnet. In Übereinstimmung mit [19] und [21] wurde der Reibungswinkel (bzw. die Reibung zwischen dem Pfahl und dem Boden) auf 2/3 des internen Reibungswinkels des Bodens festgelegt.

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 29 of 83

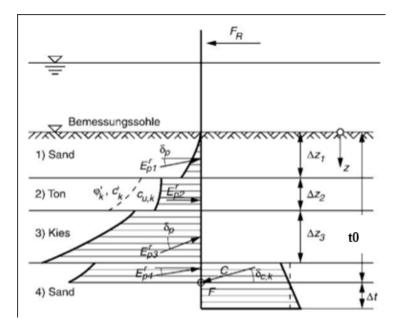


Abbildung 17 Ersatzkraft C bei M = 0 für Monopiles in mehreren Bodenschichten, Ref. [19]

$$\Delta t = \frac{1}{2} \cdot C_{\text{h,k,Blum}} \cdot \gamma_{\text{Q}} \cdot \frac{\gamma_{\text{R,e}}}{e_{\text{ph,k}}^r}$$

mit

erph,k

Ordinate des charakteristischen räumlichen Erddrucks in Höhe der ErsatzkrafC.

Abbildung 18 Bestimmung von∆t gemäß Ref. [19]

8.3 Pfahltiefe

Zur Bestimmung der Tiefe Δt, wie im vorherigen Abschnitt erörtert, wird die Ersatzkraft C durch eine Linienlast substituiert, die den Erddruck darstellt. Eine Empfehlung des Flexible Dolphins Committee lautet, Δt auf eine Weise zu bestimmen, die von der EAU leicht abweicht. Dadurch soll vermieden werden, dass die erforderliche Fußtiefe bei weicheren Schichten unter t₀ unterschätzt wird. Zur Bestimmung von Δt wird eine intuitive Methode angewandt, siehe

ULS-GEO check	ULS/GEO-Nachweis
Passive earth pressure (spatial resistance at pile toe)	Passiver Erddruck (räumlicher Widerstand am Pfahlfuß)
ULS/SLS fixity check	ULS/SLS-Nachweis der Einspannung
Passive earth pressure (reduced spatial resistance at pile toe)	Passiver Erddruck (verminderter räumlicher Widerstand am Pfahlfuß)

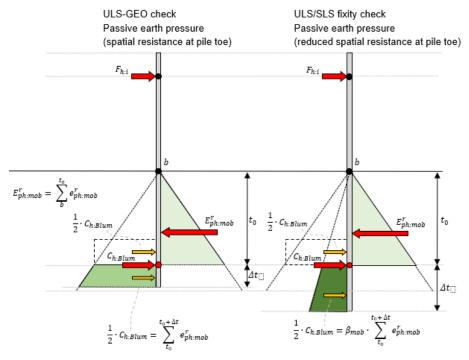
ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 30 of 83

Abbildung 19 unten.

Im Grenzzustand der Tragfähigkeit (ULS) ist Δt so anzunehmen, dass die Resultante der mittelgrünen Erddruckfläche (Trapez) auf der linken Seite von

ULS-GEO check	ULS/GEO-Nachweis
Passive earth pressure (spatial resistance at pile toe)	Passiver Erddruck (räumlicher Widerstand am Pfahlfuß)
ULS/SLS fixity check	ULS/SLS-Nachweis der Einspannung
Passive earth pressure (reduced spatial resistance at pile toe)	Passiver Erddruck (verminderter räumlicher Widerstand am Pfahlfuß)

Abbildung 19 gleich der Hälfte der Ersatzkraft ist. Allerdings sollte Δt nie kleiner als 0,2 x t₀ werden.


Durch das Flexible Dolphins Committee wurde ein weiterer Nachweis zum Grenzzustand der Gebrauchstauglichkeit (SLS) hinzugefügt. Durch diesen Nachweis soll sichergestellt werden, dass sich der Boden am Fuß unter häufigen Einwirkungen nicht plastisch verformt. Denn dies hätte fortlaufende Pfahlverformungen zur Folge. Dieser Nachweis entspricht daher normalen Betriebsbedingungen.

Im Grenzzustand der Gebrauchstauglichkeit (SLS) ist Δt so anzunehmen, dass die Resultante der dunkelgrünen Erddruckfläche (Trapez) auf der rechten Seite von

ULS-GEO check	ULS/GEO-Nachweis
Passive earth pressure (spatial resistance at pile toe)	Passiver Erddruck (räumlicher Widerstand am Pfahlfuß)
ULS/SLS fixity check	ULS/SLS-Nachweis der Einspannung
Passive earth pressure (reduced spatial resistance at pile toe)	Passiver Erddruck (verminderter räumlicher Widerstand am Pfahlfuß)

Abbildung 19 multipliziert mit einem β -Faktor gleich der Hälfte der Ersatzkraft ist. Es wurde empirisch festgestellt, dass die Ergebnisse für β = 0,33 zufriedenstellend sind.

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 31 of 83

ULS-GEO check	ULS/GEO-Nachweis
Passive earth pressure (spatial resistance at pile toe)	Passiver Erddruck (räumlicher Widerstand am Pfahlfuß)
ULS/SLS fixity check	ULS/SLS-Nachweis der Einspannung
Passive earth pressure (reduced spatial resistance at pile toe)	Passiver Erddruck (verminderter räumlicher Widerstand am Pfahlfuß)

Abbildung 19 Pfahltiefe gemäß der Praxis des Flexible Dolphins Committee

8.4 Pfahlbemessungsnachweise

8.4.1 Abschnittsprüfung im Grenzzustand STR/GEO

Die Beanspruchbarkeit der Pfahlabschnitte der Klassen 1, 2 und 3 im ULS-Grenzzustand (STR/GEO) wurde mit Ref. [5] Abschnitt 6.2 bestimmt.

Die Beanspruchbarkeit von Pfahlabschnitten der Klasse 4 im ULS-Grenzzustand (STR/GEO) prüft DMC mit:

- Ref. [7] Eurocode 1993-1-6 Abschnitt 8.5.2, 8.5.3 und Anhang D (immer für Ton und Zone 1)
- Ref. [21] Abschnitt 3.8 Gresnigt-Methode (immer f
 ür Sand und Zone 2 und 3)

Im vorliegenden Fall sind jedoch Pfähle der Klasse 4 nicht Teil der Bemessung, sodass dieser Nachweis nicht erforderlich ist.

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 32 of 83

Die Pfähle wurden für folgenden STR/GEO-Grenzzustand (T = 100) geprüft:

- Bemessungskonzept 2 mit Sicherheitsbeiwerte aus Tabelle 12.1 der EAU (Ref. [19]). Siehe auch Abbildung 4.
- Bestimmung der Kräfte im Inneren anhand der Blum-Methode unter Annahme der vollständigen Mobilisierung des passiven Erddrucks.
- Räumlicher passiver Erdwiderstand bestimmt mit DIN 4085 (Ref. [18]).
- Erforderliche Fußtiefe bestimmt unter konservativer Berücksichtigung des horizontalen Gleichgewichts unterhalb der Höhe, in der das Biegemoment Null ist. Siehe auch Abschnitt Pfahltiefe.
- Einschließlich der Wellen- und Strömungskräfte auf die Pfähle selbst.
- Keine Korrosion berücksichtigt (höhere Steifigkeit bedeutet höhere Kräfte).
- Höchste Aufprallstärke bei +7,16 + 2,20 = +9,36 m SKN mit niedrigem Meeresboden bei −12,30 m SKN (einschließlich Kolk) für maximale Verformung.
- Niedrigste Aufprallstärke bei −1,03 + 2,20 = +1,17 m SKN mit hohem Meeresboden bei −9,80 m SKN (einschließlich Kolkschutz) für maximale Kräfte im Pfahlinneren.
- Die vorherrschende Wellenrichtung für maximale auf die Pfähle einwirkende Kräfte ist 51°N.

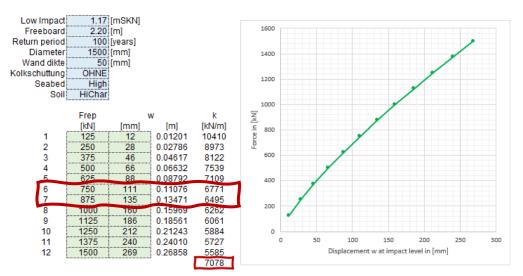
High Impact	Starker Aufprall
Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
OHNE	OHNE
Low	Niedrig
LowChar	NieChar
Frep [kN]	F _{rep} [kN]
Force in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

Abbildung 20 zeigt die Bestimmung der Pfahlsteifigkeit bei niedriger Aufprallstärke mit dem DMC-Blum-Tabellenblatt.

Low Impact	Starker Aufprall
Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 33 of 83

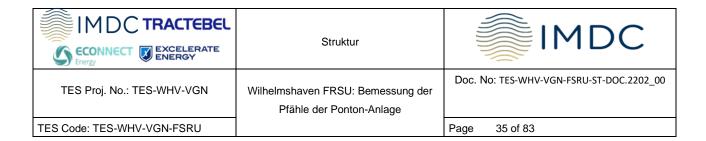
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
Frep [kN]	F _{rep} [kN]
Force in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

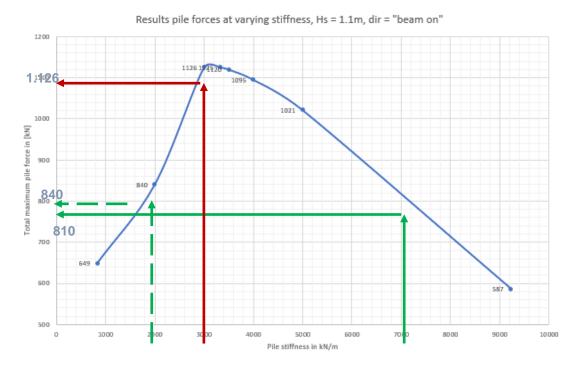

Abbildung 21 zeigt die Bestimmung der Pfahlsteifigkeit bei hoher Aufprallstärke mit dem DMC-Blum-Tabellenblatt.

High Impact	Starker Aufprall
Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
OHNE	OHNE
Low	Niedrig
LowChar	NieChar
Frep [kN]	F _{rep} [kN]
Force in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

Abbildung 20 Pfahlsteifigkeit bei hoher Aufprallstärke

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 34 of 83


Low Impact	Starker Aufprall
Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
Frep [kN]	F _{rep} [kN]
Force in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

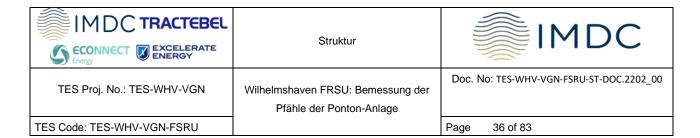

Abbildung 21 Pfahlsteifigkeit bei niedriger Aufprallstärke

Im Ansys-AQWA-Modell wird für alle Pfähle die gleiche Steifigkeit in alle Richtungen angenommen, zum Beispiel 3.000 kN/m. Anschließend wird ein Durchlauf ausgeführt, der die Reaktionskräfte der Pfähle ergibt. Dann wird die maximale Kraft aller Pfähle gewählt, die in diesem Fall 1.126 kN beträgt. Der Durchlauf ist in

Results pile forces at varying stiffness, Hs = 1.1m, dir = "beam on"	Ergebnisse auf Pfähle einwirkende Kräfte bei versch. Steifigkeit, Hs = 1,1 m, Richtung = "dwars"
Total maximum pile force in [kN]	Max. auf Pfahl einwirkende Kraft in [kN]
Pile stiffness in kN/m	Pfahlsteifigkeit in kN/m

Abbildung 22 mit einem einzelnen Punkt dargestellt. Daraufhin werden weitere Durchläufe mit unterschiedlicher Steifigkeit ausgeführt, um die Form der Systemantwort zu ermitteln. Von Bedeutung sind dabei die Steifigkeiten, die an den Extremen (niedrige und hohe Aufprallstärke) liegen, sowie die Steifigkeiten, die die höchsten Reaktionskräfte ergeben.

Results pile forces at varying stiffness, Hs = 1.1m, dir = "beam on"	Ergebnisse auf Pfähle einwirkende Kräfte bei versch. Steifigkeit, Hs = 1,1 m, Richtung = "dwars"
Total maximum pile force in [kN]	Max. auf Pfahl einwirkende Kraft in [kN]
Pile stiffness in kN/m	Pfahlsteifigkeit in kN/m


Abbildung 22 Pfahlreaktionskraft als Funktion der Pfahlsteifigkeit im STR/GEO-Grenzzustand

Die Pfahlsteifigkeit bei niedriger Aufprallstärke beträgt, wenn der Kolkschutz berücksichtigt wird, ca. 20.000 kN/m. Aus

Results pile forces at varying stiffness, Hs = 1.1m, dir = "beam on"	Ergebnisse auf Pfähle einwirkende Kräfte bei versch. Steifigkeit, Hs = 1,1 m, Richtung = "dwars"
Total maximum pile force in [kN]	Max. auf Pfahl einwirkende Kraft in [kN]
Pile stiffness in kN/m	Pfahlsteifigkeit in kN/m

Abbildung 22 ist ersichtlich, dass für diese Steifigkeit kein Durchlauf ausgeführt wurde. Der Trend lässt jedoch erwarten, dass die Pfahlreaktionskraft bei 20.000 kN/m niedriger als ca. 800 ist, die Kraft bei niedriger Aufprallstärke ohne Kolkschutz. Bei einer höheren Steifigkeit (mit Kolkschutz) ist für eine niedrige Aufprallstärke bei 1,17 m SKN und für eine Kraft von 800 kN der Einspannungspunkt höher und folglich das Biegemoment niedriger. Folglich ergibt der Steifigkeitsbereich von 9.000 bis 20.000 kN/m keine maßgeblichen Biegemomente und wird aus der Analyse ausgeschlossen.

Anschließend wird das DMC-Blum-Tabellenblatt zur Ermittlung des maximalen Biegemoments in den Pfählen verwendet. Zunächst wird das Modell mit dem Blum-Tabellenblatt auf die Steifigkeitseingabe (

High Impact	Starker Aufprall
Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
OHNE	OHNE
Low	Niedrig
LowChar	NieChar
Frep [kN]	F _{rep} [kN]
Force in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

Abbildung 20 und

Low Impact	Starker Aufprall
Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
Frep [kN]	F _{rep} [kN]
Force in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

Abbildung 21) kalibriert. Mit Beiwerten gleich 1,0 wird eine Kraft von 840 kN bei 9,36 m SKN (hohe Aufprallstärke) eingegeben. Die Ergebnisse sind in

Levels	Höhen
Pile top	Pfahlspitze
Impact high	Aufprall hoch
Impact low	Aufprall niedrig
Water line	Wasserlinie
Seabed high	Meeresboden hoch
Seabed nom	Meeresboden Nennhöhe
Seabed low	Meeresboden niedrig
Soil profile bottom	Bodenprofil unten
Seabed	Meeresboden
Impact	Aufprall
Level Mmax (V=0)	Level Mmax (V = 0)

Struktur

TES Proj. No.: TES-WHV-VGN

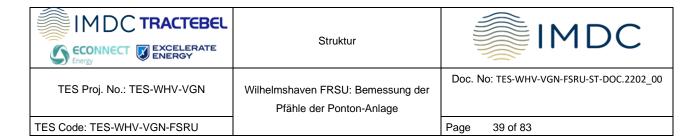
TES Code: TES-WHV-VGN-FSRU

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

Page 37 of 83

Mmax	Mmax
Level Ersatzkraft (M=0)	Level Ersatzkraft (M = 0)
Ersatz kraft	Ersatzkraft
Loads	Lasten
Force	Kraft
UDL	UDL
Factors toe depth	Beiwerte Fußtiefe
Passive β _{mob}	Passives β _{mob}
Distribution C _h	Verteilung C _h
Calculation summary	Berechnungszusammenfassung
Toe depth	Fußtiefe
\mathbf{t}_{fix}	t_{fix}
Toe depth	Fußtiefe
User choices	Benutzerauswahl
Corrosion	Korrosion
Impact	Aufprall
Seabed	Meeresboden
Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze
Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption
Applied toe depth	Angewandte Fußtiefe
Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Keine
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne

Abbildung 23 dargelegt. Das DMC-Blum-Tabellenblatt ergibt eine Steifigkeit von 1.437 kN/m, was


High Impact	Starker Aufprall
Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 38 of 83

Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
OHNE	OHNE
Low	Niedrig
LowChar	NieChar
Frep [kN]	F _{rep} [kN]
Force in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

Abbildung 20 entspricht. Für 1,17 [m SKN] (niedrige Aufprallstärke) wurde gleichermaßen vorgegangen. Siehe Abbildung

Levels	Höhen
Pile top	Pfahlspitze
Impact high	Aufprall hoch
Impact low	Aufprall niedrig
Water line	Wasserlinie
Seabed high	Meeresboden hoch
Seabed nom	Meeresboden Nennhöhe
Seabed low	Meeresboden niedrig
Soil profile bottom	Bodenprofil unten
Seabed	Meeresboden
Impact	Aufprall
Level Mmax (V=0)	Level Mmax (V = 0)
Mmax	Mmax
Level Ersatzkraft (M=0)	Level Ersatzkraft (M = 0)
Ersatz kraft	Ersatzkraft
Loads	Lasten
Force	Kraft
UDL	UDL
Factors toe depth	Beiwerte Fußtiefe
Passive β _{mob}	Passives β _{mob}
Distribution C _h	Verteilung C _h
Calculation summary	Berechnungszusammenfassung
Toe depth	Fußtiefe
t _{fix}	t _{fix}
Toe depth	Fußtiefe
User choices	Benutzerauswahl
Corrosion	Korrosion
Impact	Aufprall

Seabed	Meeresboden
Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze
Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption
Applied toe depth	Angewandte Fußtiefe
Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Nr.
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne

Abbildung 24.

		Levels			Loads		l	Jser choice	es
	Pile top	12.00	[mSKN]	Force	840	kN]	Corrosion	No	
lm	pact high	9.36	mSKN]	UDL	0.0	[kN/m2]	Impact	High	
In	npact low	10.86	[mSKN]	E	246	[kNm]	Seabed	Low	•
V	Vater line	7.16	[mSKN]	ľ		"	Soil	LoChar	•
Sea	abed high	-10.80	[mSKN]	Fac	tors toe d	epth	PSFs Soil	Char	•
Sea	abed nom	-10.80	[mSKN]	Passive β _{mob}	1.00	STR/GEO	Soil type (class 4)	Sand mode	rately/dens
Se	eabed low	-12.30	[mSKN]	Distribution C _h	0.50	[-]	Kolkschutzschutting Ohne		1
Soil profi	le bottom	-70.00	[mSKN]	ľ		"			
	"		"	Calcu	lation sur	nmary	Displacement@TOP	661.0	[mm]
	Seabed	-12.30	[mSKN]	t0	10.18	[m]	Displacement@IP	585	[mm]
	Impact	9.36	[mSKN]	Δt	1.76	[m]	Stiffness@IP	1437	[kN/m]
Level Mm	nax (V=0)	-16.69	[mSKN]	Toe depth	-24.24	[mSKN]	Energy absorption	246	[kNm]
	Mmax	20873	[kNm]	0.2*t0	2.04	[m]	Applied toe depth	-32.00	[mSKN]
evel Ersatzkr	raft (M=0)	-22.48	[mSKN]	t _{fix}	2.04	[m]	Total pile length	44.00	[m]
E	rsatzkraft	9044	[kN]	Toe depth	-24.52	[mSKN]	Total pile weight	78.7	[t]

Levels	Höhen
Pile top	Pfahlspitze
Impact high	Aufprall hoch
Impact low	Aufprall niedrig
Water line	Wasserlinie
Seabed high	Meeresboden hoch
Seabed nom	Meeresboden Nennhöhe
Seabed low	Meeresboden niedrig

Struktur

TES Proj. No.: TES-WHV-VGN

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

TES Code: TES-WHV-VGN-FSRU Page 40 of 83

Soil profile bottom	Bodenprofil unten
Seabed	Meeresboden
Impact	Aufprall
Level Mmax (V=0)	Level Mmax (V = 0)
Mmax	Mmax
Level Ersatzkraft (M=0)	Level Ersatzkraft (M = 0)
Ersatz kraft	Ersatzkraft
Loads	Lasten
Force	Kraft
UDL	UDL
Factors toe depth	Beiwerte Fußtiefe
Passive β _{mob}	Passives β _{mob}
Distribution C _h	Verteilung C _h
Calculation summary	Berechnungszusammenfassung
Toe depth	Fußtiefe
t _{fix}	t _{fix}
Toe depth	Fußtiefe
User choices	Benutzerauswahl
Corrosion	Korrosion
Impact	Aufprall
Seabed	Meeresboden
Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze
Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption
Applied toe depth	Angewandte Fußtiefe
Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Keine
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne

Struktur

TES Proj. No.: TES-WHV-VGN

TES Code: TES-WHV-VGN-FSRU

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

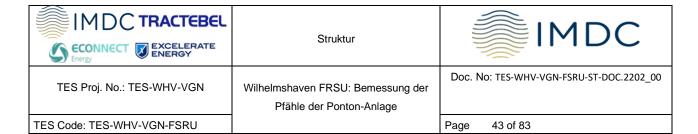
Page 41 of 83

	Levels			Loads		l l	Iser choic	es
Pile top	12.00	[mSKN]	Force	810	kN]	Corrosion	No	
mpact high	9.36	[mSKN]	UDL	0.0	[kN/m2]	Impact	Low	
Impact low	1.17	[nSKN]	E	128	[kNm]	Seabed	High	
Water line	-1.03	[mSKN]	Ĭ"			Soil	HiChar	
eabed high	-10.80	[mSKN]	Fact	ors toe d	epth	PSFs Soil	Char	
eabed nom	-10.80	[mSKN]	Passive β _{mob}	1.00	STR/GEO	Soil type (class 4)	Sand mod	erately/dense
Seabed low	-12.30	[mSKN]	Distribution C _h	Distribution C _h 0.50 [-] Kolkschutzschutting		Ohne		
file bottom	-70.00	[mSKN]	1					
			Calcul	ation sur	nmary	Displacement@TOP	232.0	[mm]
Seabed	-10.80	[mSKN]	t0	7.35	[m]	Displacement@IP	122	[mm]
Impact	1.17	[mSKN]	Δt	0.98	[m]	Stiffness@IP	6640	[kN/m]
lmax (V=0)	-13.98	[mSKN]	Toe depth	-19.13	[mSKN]	Energy absorption	49	[kNm]
Mmax	11617	[kNm]	0.2*t0	1.47	[m]	Applied toe depth	-32.00	[mSKN]
kraft (M=0)	-18.15	[mSKN]	t _{fix}	1.47	[m]	Total pile length	44.00	[m]
Ersatzkraft	8408	[kN]	Toe depth	-19.62	[mSKN]	Total pile weight	78.7	[t]
1	mpact high Impact low Water line eabed high eabed nom Seabed low file bottom Seabed Impact max (V=0) Mmax kraft (M=0)	mpact high 9.36	mpact high 9.36 mSKN mSKN mpact low 1.17 mSKN mSK	mpact high 9.36 [mSKN] UDL Impact low 1.17 [mSKN] E Water line -1.03 [mSKN] Fact eabed high -10.80 [mSKN] Passive β _{mob} beabed nom -10.80 [mSKN] Distribution Ch Geabed low -12.30 [mSKN] Distribution Ch file bottom -70.00 [mSKN] Calcul Seabed -10.80 [mSKN] t0 Impact 1.17 [mSKN] Δt max (V=0) -13.98 [mSKN] Toe depth Mmax 11617 [kNm] 0.2*t0 kraft (M=0) -18.15 [mSKN] t _{fix}	mpact high 9.36 mSKN	mpact high 9.36 mSKN	mpact high 9.36 mSKN] UDL 0.0 [kNm2] Impact Impact low 1.17 mSKN] E 128 [kNm] Seabed Water line -1.03 mSKN] Factors toe depth PSFs Soil eabed high -10.80 mSKN] Passive βmob 1.00 STR/GEO Soil type (class 4) Seabed low -12.30 mSKN] Distribution Ch 0.50 [-] Kolkschutzschutting file bottom -70.00 mSKN] t0 7.35 [m] Displacement@TOP Seabed -10.80 [mSKN] t0 7.35 [m] Displacement@IP Impact 1.17 [mSKN] Δt 0.98 [m] Stiffness@IP max (V=0) -13.98 [mSKN] Toe depth -19.13 [mSKN] Energy absorption Mmax 11617 [kNm] 0.2*t0 1.47 [m] Applied toe depth kraft (M=0) -18.15 [mSKN] tfs 1.47 [m]	mpact high 9.36 mSKN mSKN mSKN E 128 msKN Seabed High High Seabed High Seabed High High Seabed High H

Levels	Höhen
Pile top	Pfahlspitze
Impact high	Aufprall hoch
Impact low	Aufprall niedrig
Water line	Wasserlinie
Seabed high	Meeresboden hoch
Seabed nom	Meeresboden Nennhöhe
Seabed low	Meeresboden niedrig
Soil profile bottom	Bodenprofil unten
Seabed	Meeresboden
Impact	Aufprall
Level Mmax (V=0)	Level Mmax (V = 0)
Mmax	Mmax
Level Ersatzkraft (M=0)	Level Ersatzkraft (M = 0)
Ersatz kraft	Ersatzkraft
Loads	Lasten
Force	Kraft
UDL	UDL
Factors toe depth	Beiwerte Fußtiefe
Passive β _{mob}	Passives β _{mob}
Distribution C _h	Verteilung C _h
Calculation summary	Berechnungszusammenfassung
Toe depth	Fußtiefe
t _{fix}	t _{fix}
Toe depth	Fußtiefe
User choices	Benutzerauswahl
Corrosion	Korrosion
Impact	Aufprall

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 42 of 83

Seabed	Meeresboden
Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze
Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption
Applied toe depth	Angewandte Fußtiefe
Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Nr.
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne


Abbildung 24 Ausgabe DMC-Blum-Tabellenblatt bei niedriger Aufprallstärke

Eine hohe Aufprallstärke ergibt die höchsten Biegemomente bei niedrigen charakteristischen Werten des Bodens und bei niedrigem Meeresboden. Eine niedrige Aufprallstärke ergibt die höchsten Biegemomente bei hohen charakteristischen Werten des Bodens und bei hohem Meeresboden. Allerdings können hohe Biegemomente auf dazwischen liegenden Höhen vorkommen, wie aus der Reaktionskurve in

Results pile forces at varying stiffness, Hs = 1.1m, dir = "beam on"	Ergebnisse auf Pfähle einwirkende Kräfte bei versch. Steifigkeit, Hs = 1,1 m, Richtung = "dwars"
Total maximum pile force in [kN]	Max. auf Pfahl einwirkende Kraft in [kN]
Pile stiffness in kN/m	Pfahlsteifigkeit in kN/m

Abbildung 22 hervorzugehen scheint. Bei einer Steifigkeit von 3.000 kN/m beträgt die Reaktionskraft 1.126 kN. Das Blum-Tabellenblatt wurde zur Ermittlung der entsprechenden Aufprallstärke für Kombinationen aus hohem und niedrigem Meeresboden und hohen und niedrigen charakteristischen Bodenwerten verwendet.

Levels	Höhen
Pile top	Pfahlspitze
Impact high	Aufprall hoch
Impact low	Aufprall niedrig
Water line	Wasserlinie
Seabed high	Meeresboden hoch
Seabed nom	Meeresboden Nennhöhe
Seabed low	Meeresboden niedrig
Soil profile bottom	Bodenprofil unten
Seabed	Meeresboden
Impact	Aufprall

	1
Level Mmax (V=0)	Level Mmax (V = 0)
Mmax	Mmax
Level Ersatzkraft (M=0)	Level Ersatzkraft (M = 0)
Ersatz kraft	Ersatzkraft
Loads	Lasten
Force	Kraft
UDL	UDL
Factors toe depth	Beiwerte Fußtiefe
Passive β_{mob}	Passives β _{mob}
Distribution C _h	Verteilung Ch
Calculation summary	Berechnungszusammenfassung
Toe depth	Fußtiefe
t_{fix}	t _{fix}
Toe depth	Fußtiefe
User choices	Benutzerauswahl
Corrosion	Korrosion
Impact	Aufprall
Seabed	Meeresboden
Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze
Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption
Applied toe depth	Angewandte Fußtiefe
Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Nr.
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne
	1

Abbildung 25 zeigt die Aufprallstärke bei niedrigem Meeresboden und niedrigen charakteristischen Bodenwerten für eine Pfahlsteifigkeit von 3.000 kN/m.

Struktur

TES Proj. No.: TES-WHV-VGN

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

TES Code: TES-WHV-VGN-FSRU

Page 44 of 83

		Levels			Loads		U	ser choice	es
	Pile top	12.00	[mSKN]	Force	1126	[kN]	Corrosion	No	
I	mpact high	2.75	[hSKN]	UDL	0.0	[kN/m2]	Impact	High	
	Impact low	1.17	[mSKN]	E	128	[kNm]	Seabed	Low	
	Water line	7.16	[mSKN]	Ï		"	Soil	LoChar	
S	eabed high	-10.80	[mSKN]	Fact	tors toe d	epth	PSFs Soil	Char	
S	eabed nom	-10.80	[mSKN]	Passive β _{mob}	1.00	STR/GEO	Soil type (class 4)	Sand mod	erately/dense
	Seabed low	-12.30	[mSKN]	Distribution C _h	0.50	[-]	Kolkschutzschutting	Ohne	
Soil pro	ofile bottom	-70.00	[mSKN]	ľ		"			
	,		"	Calcu	lation sur	nmary	Displacement@TOP	596.3	[mm]
	Seabed	-12.30	[mSKN]	t0	10.36	[m]	Displacement@IP	375	[mm]
	Impact	2.75	[mSKN]	Δt	1.75	[m]	Stiffness@IP	3000	[kN/m]
Level N	1max (V=0)	-17.06	[mSKN]	Toe depth	-24.41	[mSKN]	Energy absorption	211	[kNm]
	Mmax	20948	[kNm]	0.2*t0	2.07	[m]	Applied toe depth	-32.00	[mSKN]
evel Ersatz	kraft (M=0)	-22.66	[mSKN]	t _{fix}	2.07	[m]	Total pile length	44.00	[m]
	Ersatzkraft	9238	[kN]	Toe depth	-24.73	[mSKN]	Total pile weight	78.7	[t]

Ersatzkraft 9238 [kN] Toe depth -24.73 [mSKN] Total pile weight 78.7 [t]		
Levels	Höhen		
Pile top	Pfahlspitze		
Impact high	Aufprall hoch		
Impact low	Aufprall niedrig		
Water line	Wasserlinie		
Seabed high	Meeresboden hoch		
Seabed nom	Meeresboden Nennhöhe		
Seabed low	Meeresboden niedrig		
Soil profile bottom	Bodenprofil unten		
Seabed	Meeresboden		
Impact	Aufprall		
Level Mmax (V=0)	Level Mmax (V = 0)		
Mmax	Mmax		
Level Ersatzkraft (M=0)	Level Ersatzkraft (M = 0)		
Ersatz kraft	Ersatzkraft		
Loads	Lasten		
Force	Kraft		
UDL	UDL		
Factors toe depth	Beiwerte Fußtiefe		
Passive β _{mob}	Passives β _{mob}		
Distribution C _h	Verteilung C _h		
Calculation summary	Berechnungszusammenfassung		
Toe depth	Fußtiefe		
t_fix	t _{fix}		
Toe depth	Fußtiefe		
User choices	Benutzerauswahl		
Corrosion	Korrosion		
Impact	Aufprall		
Seabed	Meeresboden		

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 45 of 83

Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze
Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption
Applied toe depth	Angewandte Fußtiefe
Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Nr.
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne

Abbildung 25 Ausgabe DMC-Blum-Tabellenblatt bei Steifigkeit von 3.000 kN/m, Meeresboden = Niedrig und Boden = NieChar

Das im STR/GEO-Grenzzustand nachzuweisende Biegemoment war für folgende Situationen zu prüfen:

- 1. Hohe Aufprallstärke (bei 9,36 m SKN), Niedriger Meeresboden und NieChar-Boden mit einer Kraft von 840 + 126 = 966 kN.
- 2. Aufprallstärke entsprechend einer Steifigkeit von 3.000 kN/m für Kombinationen von Meeresboden und Boden mit einer Kraft von 1.126 + 169 = 1.295 kN.
- 3. Niedrige Aufprallstärke (1,17 m SKN), Hoher Meeresboden und HoChar-Boden mit einer Kraft von 810 + 122 = 932 kN.

Für die in Abbildung

Levels	Höhen
Pile top	Pfahlspitze
Impact high	Aufprall hoch
Impact low	Aufprall niedrig
Water line	Wasserlinie
Seabed high	Meeresboden hoch
Seabed nom	Meeresboden Nennhöhe
Seabed low	Meeresboden niedrig
Soil profile bottom	Bodenprofil unten
Seabed	Meeresboden
Impact	Aufprall
Level Mmax (V=0)	Level Mmax (V = 0)

TES Code: TES-WHV-VGN-FSRU

Struktur

TES Proj. No.: TES-WHV-VGN Wilhelmshaven FRSU: Bemessung der

Pfähle der Ponton-Anlage

Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

Page 46 of 83

	<u> </u>
Mmax	Mmax
Level Ersatzkraft (M=0)	Level Ersatzkraft (M = 0)
Ersatz kraft	Ersatzkraft
Loads	Lasten
Force	Kraft
UDL	UDL
Factors toe depth	Beiwerte Fußtiefe
Passive β _{mob}	Passives β _{mob}
Distribution C _h	Verteilung C _h
Calculation summary	Berechnungszusammenfassung
Toe depth	Fußtiefe
\mathbf{t}_{fix}	\mathbf{t}_{fix}
Toe depth	Fußtiefe
User choices	Benutzerauswahl
Corrosion	Korrosion
Impact	Aufprall
Seabed	Meeresboden
Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze
Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption
Applied toe depth	Angewandte Fußtiefe
Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Keine
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne

Abbildung 23,

Levels	Höhen
Pile top	Pfahlspitze
Impact high	Aufprall hoch
Impact low	Aufprall niedrig

TES Proj. No.: TES-WHV-VGN

Struktur

Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage

Page 47 of 83

TES Code: TES-WHV-VGN-FSRU

Water line Wasselfinile Seabed nom Meeresboden Nomhöhe Seabed low Meeresboden Nemhöhe Seabed low Meeresboden niedrig Soil profile bottom Bodenprofit unten Seabed Meeresboden Impact Aufgrall Level Mmax (V=0) Level Mmax (V=0) Memax Mmax Level Ersatzkraft (M=0) Level Ersatzkraft (M=0) Ersatz kraft Ersatzkraft (M=0) Ersatz kraft Lasten Force Kraft UDL UDL Factors toe depth Beiwerte Fußlefe Passive β=m Passive β=m Distribution Cs Verteilung C. Calculation summary Berchnungsusammenfassung Toe depth Fußliefe Is Fußliefe User choices Bonutzarauwahl Correction Bonutzarauwahl Correction Bonutzarauwahl Correction Bonutzarauwahl Correction Bonutzarauwahl Correction Bonutzarauwahl <th>Water Bran</th> <th>Managhair</th>	Water Bran	Managhair
Seabed nom Meeresboden Nemenköhe Seabed low Meeresboden niedrig Soil profile bottom Bodenprofil unten Seabed Meeresboden Impact Aufprall Level Mmax (V=0) Level Mmax (V=0) Mean Mmax Kend Evsatzkralt (M=0) Level Ersatzkralt (M=0) Ersatz kraft Ersatzkraft Loads Lasten Force Kraft UDL UDL Factors toe depth Beiwerte Fußtiefe Passive Brox Passives Brox Distribution Co. Verteilung Co. Calculation summary Berechnungszusammenfassung Toe depth Fußtiefe Inc. Inc. Toe depth Fußtiefe Inc. Inc. Veer choices Benutzerauwahl Corrosion Korrosion Impact Aufgrall Seabed Meeresboden Soil type (class 4) Boden p Soil type (class 4) Boden p Displacement@TOP <td></td> <td></td>		
Seabed low Meeresboden niedrig Soll profile bottom Bodenprofit unten Seabed Meeresboden Impact Aufprall Level Mmax (V=0) Lovel Mmax (V = 0) Mmax Mmax Level Ersatzkraft (M=0) Level Ersatzkraft (M=0) Ersatz kraft Ersatzkraft Force Kraft UDL UDL Factors toe depth Beiwerte Futtiefe Passive Broso Passive Broso Distribution Cs Vertellung Cs Calculation summary Berechnungszusammenfassung Toe depth Fusisire User Fusisire User choices Benutzerauswahl User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Bodenny (Risse 4) Bodenny (Risse 4) Kolkschutzschutting Kolkschutzschütting Verschiebung an Spitze Displacement@TOP Verschiebung an Spitze Verschiebung an Spitze Ein	-	
Soil profile bottom Bodenprofil unten		
Seabed Meeresboden Impact Aufprall Level Mmax (V=0) Level Mmax (V = 0) Mmax Mmax Level Ersatzkraft (M=0) Level Ersatzkraft (M=0) Ersatz kraft Ersatzkraft (M=0) Ersatz kraft Ersatzkraft (M=0) Loads Lasten Force Kraft UDL UDL Factor's toe depth Beiwerte Fußtiefe Passive βιαιώ Passive βιαιώ Distribution Cx Vorteilung Cx Calculation summary Berechnungszusammenfassung Toe depth Fußtefe t₀ t₀ Toe depth Fußtefe User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden Soil type (class 4) Solentrye (klasse 4) Kolkschutzschutting Kolkschutzschüttung Displacement@IP Verschiebung an Aufprallpunkt Stiffrest Biller tan Aufprallpunkt		-
Impact	·	
Level Mmax (V=0) Level Mmax (V=0) Mmax Mmax Level Ersatzkraft (M=0) Level Ersatzkraft (M=0) Ersatz kraft Ersatzkraft Ersatz kraft Ersatzkraft (M=0) Ersatz kraft Ersatzkraft (M=0) Loads Lasten Force Kraft UDL UDL Factors toe depth Beiwerte Fulktiefe Passive βmoc Possive βmoc Distribution Co Verteillung Co Calculation summary Berochnungszusammenfassung Toe depth Fußtelfe Iw to Toe depth Fußtelfe User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden PSFS Soil Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschüttung Kolkschutzschüttung Displacement @ TOP Verschiebung an Aufprallpunkt Einfegseharn Aufprallpunkt <	Seabed	
Mmax Mmax Level Ersatzkraft (M=0) Level Ersatzkraft (M=0) Ersatz kraft Ersatzkraft Loads Lasten Force Kraft UDL UDL Factors toe depth Beiverte Fußtiefe Passive βινώο Passives βινώο Distribution Co Verteilung Co. Calculation summary Berechnungszusammenfassung Toe depth Fußtiefe tox tox User choices Benutzerauswahl Corrosion Korrosion Impact Aufgrall Seabed Meeresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Boden Kolkschutzschutting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Stefigleit an Aufprallpunkt Stiffness @IP Stefigleit an Aufprallpunkt Energy absorption Energiebsorption Applied toe depth Angewandte Fußtiefe Total pile leng		'
Level Ersatzkraft (M=0) Level Ersatzkraft (M=0) Ersatz kraft Ersatzkraft Loads Lasten Force Kraft UDL UDL Factors toe depth Belwerte Fußtiefe Passive βπωδ Passive βπωδ Distribution Cn Verteitung Cn Calculation summary Berechnungszusammenfassung Toe depth Fußtiefe User Choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Mecresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Boden Kolkschutzschutting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Steingkeit an Aufprallpunkt Stiffness@IP Steingkeit an Aufprallpunkt Energy absorption Energiebsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfallgesamtgewicht No No No	Level Mmax (V=0)	Level Mmax (V = 0)
Ersatz kraft Ersatz kraft Loads Lasten Force Kraft UDL UDL Factors toe depth Bewerte Fußtiefe Passive βπαδ Passives βπαδ Distribution Cn Verfeilung Cn Calculation summary Berechnungszusammenfassung Toe depth Fußtiefe Varender Fußtiefe User choices Benutzerauswahl Corresion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden Soil ye (class 4) Boden Soil ye (class 4) Bodentyp (Klasse 4) Kolkschutzschutting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufpralipunkt Stiffness@IP Steifigkeit an Aufpralipunkt Energy absorption Energieabsorption Applied toe depth Angewantle Fußliefe Total pile weight Pfahlgesamtlegwicht No Nr. Low <	Mmax	Mmax
Loads Lasten Force Kraft UDL UDL Factors toe depth Beiwerte Fußtiefe Passives βmille Passives βmille Distribution Ch Verteilung Ch Calculation summary Berechnungszusammenfassung Toe depth Fußtiefe User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden Soil type (class 4) Boden Soil type (class 4) Bodenyp (Klasse 4) Kolkschutzschütting Kolkschutzschüttung Displacement@IP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffiess@IP Stelfigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtefe Total pille length Pfahlgesamtlagewicht No Nr. Low Niedrig High HoChar	Level Ersatzkraft (M=0)	Level Ersatzkraft (M = 0)
Force Kraft UDL UDL Factors toe depth Belwerte Fußtiefe Passive βπισο Passives βπισο Distribution Cn Verfeilung Cn Calculation summary Berechungszusammenfassung Toe depth Fußtiefe User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Beden Soil Vipe (class 4) Sicherheitsbeliverte Boden Soil type (class 4) Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied tee depth Angewandte Fußtiefe Total pile length Pfahlgesamtlange No Nr. Low Niedrig High Hoch High Hoch	Ersatz kraft	Ersatzkraft
UDL UDL Factors toe depth Beiwerte Füßtiefe Passive βπωδ Passives βπωδ Distribution Cn Verteilung Cn Calculation summary Berechnungszusammenfassung Toe depth Fußtiefe t₀ t₀ Toe depth Fußtiefe User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Bodentyp (Klasse 4) Kokschutzschutting Kokschutzschüttung Displacement@TOP Verschlebung an Spitze Displacement@IP Verschlebung an Aufprallpunkt Stiffness@IP Stelfigkeit an Aufprallpunkt Energy absorption Energleabsorption Applied toe depth Angewandte Füßtiefe Total pile weight Pfallgesamtlänge Total pile weight Pfallgesamtlänge Total pile weight Niedrig High Hoch	Loads	Lasten
Factors toe depth Belwerte Fultiefe Passive βmob Passives βmob Distribution Cn Verteilung Cn Calculation summary Berechnungszusammenfassung Toe depth Fußtiefe tix tix Toe depth Fußtiefe User choices Benutzerauswahl Corrosion Korrosion Meeresboden Meeresboden Soil Boden Soil type (class 4) Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschutting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufpralipunkt Stiffness@IP Stelfigkeit an Aufpralipunkt Energiabsorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlange Total pile weight Pfahlgesamtlange Total pile weight Niedrig High Hoch High Hoch	Force	Kraft
Passive βπιου Passives βπιου Distribution Ch Verteilung Ch Calculation summary Berechnungszusammenfassung Toe depth Fußtiefe tix tix Toe depth Fußtiefe User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Kolkschutzschutting Kolkschutzschutting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Stiffigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlänge Total pile weight Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch HiGhra HoChar	UDL	UDL
Distribution Cn Verteilung Cn Calculation summary Berechnungszusammenfassung Toe depth Fußtiefe tix tix Toe depth Fußtiefe User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschutting Kolkschutzschüttung Displacement @TOP Verschiebung an Spitze Displacement @IP Verschiebung an Aufprallpunkt Stiffness @IP Stiffigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamttänge Total pile weight Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch High Hoch	Factors toe depth	Beiwerte Fußtiefe
Calculation summary Berechnungszusammenfassung Toe depth Fußtiefe tix tix Toe depth Fußtiefe User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschutting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Stelfigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch High Hoch	Passive β_{mob}	Passives β _{mob}
Toe depth Fußtiefe tix tix Toe depth Fußtiefe User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschutting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlänge Total pile weight Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch Hichar HoChar	Distribution C _h	Verteilung Ch
tix tix Toe depth FuStiefe User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschütting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steffigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlänge Total pile weight Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch HiGhar HoChar	Calculation summary	Berechnungszusammenfassung
Toe depth Fußtiefe User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschüttung Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlänge Total pile weight Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch High Hoch	Toe depth	Fußtiefe
User choices Benutzerauswahl Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschüttung Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch High Hoch	t_{fix}	t _{fix}
Corrosion Korrosion Impact Aufprall Seabed Meeresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschutting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch HiChar	Toe depth	Fußtiefe
Impact Aufprall Seabed Meeresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschüttung Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlänge Total pile weight Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch HiChar	User choices	Benutzerauswahl
Seabed Meeresboden Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschutting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlänge Total pile weight Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch HiChar	Corrosion	Korrosion
Soil Boden PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschütting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlänge Total pile weight Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch HiChar	Impact	Aufprall
PSFs Soil Sicherheitsbeiwerte Boden Soil type (class 4) Bodentyp (Klasse 4) Kolkschutzschütting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlänge Total pile weight Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch	Seabed	Meeresboden
Soil type (class 4) Kolkschutzschütting Kolkschutzschüttung Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlänge Total pile weight No Nr. Low Niedrig High HiChar	Soil	Boden
Kolkschutzschutting Displacement@TOP Verschiebung an Spitze Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtgewicht No Nr. Low Niedrig High HiChar	PSFs Soil	Sicherheitsbeiwerte Boden
Displacement@TOP Displacement@IP Verschiebung an Aufprallpunkt Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Applied toe depth Total pile length Pfahlgesamtlänge Total pile weight No Nr. Low Niedrig High HiChar	Soil type (class 4)	Bodentyp (Klasse 4)
Displacement@IP Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlänge Total pile weight No Nr. Low Niedrig High HiChar	Kolkschutzschutting	Kolkschutzschüttung
Stiffness@IP Steifigkeit an Aufprallpunkt Energy absorption Energieabsorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlänge Total pile weight Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch HiChar	Displacement@TOP	Verschiebung an Spitze
Energy absorption Applied toe depth Angewandte Fußtiefe Total pile length Pfahlgesamtlänge Total pile weight No Nr. Low Niedrig High HiChar	Displacement@IP	Verschiebung an Aufprallpunkt
Applied toe depth Total pile length Pfahlgesamtlänge Total pile weight No Nr. Low Niedrig High HiChar	Stiffness@IP	Steifigkeit an Aufprallpunkt
Total pile length Pfahlgesamtlänge Total pile weight Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch HiChar	Energy absorption	Energieabsorption
Total pile weight Pfahlgesamtgewicht No Nr. Low Niedrig High Hoch HiChar HoChar	Applied toe depth	Angewandte Fußtiefe
No Nr. Low Niedrig High Hoch HiChar HoChar	Total pile length	Pfahlgesamtlänge
Low Niedrig High Hoch HiChar HoChar	Total pile weight	Pfahlgesamtgewicht
High Hoch HoChar	No	Nr.
High Hoch HoChar	Low	Niedrig
HiChar HoChar	High	Hoch
	HiChar	Hoonar

Struktur

TES Proj. No.: TES-WHV-VGN

TES Code: TES-WHV-VGN-FSRU

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

Page

ge 48 of 83

Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne

Abbildung 24 und

r	
Levels	Höhen
Pile top	Pfahlspitze
Impact high	Aufprall hoch
Impact low	Aufprall niedrig
Water line	Wasserlinie
Seabed high	Meeresboden hoch
Seabed nom	Meeresboden Nennhöhe
Seabed low	Meeresboden niedrig
Soil profile bottom	Bodenprofil unten
Seabed	Meeresboden
Impact	Aufprall
Level Mmax (V=0)	Level Mmax (V = 0)
Mmax	Mmax
Level Ersatzkraft (M=0)	Level Ersatzkraft (M = 0)
Ersatz kraft	Ersatzkraft
Loads	Lasten
Force	Kraft
UDL	UDL
Factors toe depth	Beiwerte Fußtiefe
Passive β _{mob}	Passives β _{mob}
Distribution C _h	Verteilung C _h
Calculation summary	Berechnungszusammenfassung
Toe depth	Fußtiefe
\mathbf{t}_{flx}	t _{fix}
Toe depth	Fußtiefe
User choices	Benutzerauswahl
Corrosion	Korrosion
Impact	Aufprall
Seabed	Meeresboden
Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze
Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 49 of 83

Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Nr.
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne

Abbildung 25 durchgeführten Kalibrierungen wurden keine Sicherheitsbeiwerte verwendet. Für den STR/GEO-Grenzzustand wird ein Beiwert von 1,20 für die veränderliche Einwirkung und ein Beiwert von 1,15 für den Erdwiderstand verwendet. Siehe auch Abbildung 4.

Ferner wurde das Biegemoment um 10 % erhöht, um den Wellen und der Strömung Rechnung zu tragen, die unmittelbar auf die Pfähle einwirken. Siehe auch Abschnitt 7.1.

W_pl=	1.05E+08	[mm3]	fy=	410	[N/mm2]	γ _{м0} =	1.10	UC
CMB	Stiffness	F	Impact	Seabed	Soil	Fw+c	Moment	Section check
[-]	[kN/m]	[kN]	[mSKN]	[-]	[-]	[kN]	[kNm]	(STR/GEO
1	1437	840	9.36	Low	LoChar	126	29476	0.75
2	3000	1126	2.75	Low	LoChar	169	29850	0.76
3	3000	1126	5.69	High	HiChar	169	30558	0.78
4	3000	1126	4.63	Low	HiChar	169	30880	0.79
5	3000	1126	3.94	High	LoChar	169	29792	0.76
6	6640	810	1.17	High	HiChar	122	16518	0.42
				_				

СМВ	СМВ
Stiffness	Steifigkeit
Impact	Aufprall
Seabed	Meeresboden
Soil	Boden
Moment	Moment
Section check (STR/GEO)	Abschnittsnachweis (STR/GEO)

Tabelle 4 STR/GEO-Nachweise bei niedriger und hoher Aufprallstärke sowie für die höchste Reaktionskraft bei Steifigkeit 3.000 kN/m.

Als Beispiel für das Verfahren, das zur Ermittlung der maximalen STR/GEO-Biegemomente verwendet wurde, die hier vorstehend in

СМВ	СМВ
Stiffness	Steifigkeit
Impact	Aufprall
Seabed	Meeresboden
Soil	Boden

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 50 of 83

Moment	Moment
Section check (STR/GEO)	Abschnittsnachweis (STR/GEO)

Tabelle 4 gezeigt sind, wird nun CMB2 herangezogen.

1. Um zu ermitteln, auf welcher Höhe der Pfahl eine Steifigkeit von 3.000 kN/m hat, wurden eine Kraft von F = 1.126 kN und Beiwerte gleich Eins verwendet. Siehe

Levels	Höhen
Pile top	Pfahlspitze
Impact high	Aufprall hoch
Impact low	Aufprall niedrig
Water line	Wasserlinie
Seabed high	Meeresboden hoch
Seabed nom	Meeresboden Nennhöhe
Seabed low	Meeresboden niedrig
Soil profile bottom	Bodenprofil unten
Seabed	Meeresboden
Impact	Aufprall
Level Mmax (V=0)	Level Mmax (V = 0)
Mmax	Mmax
Level Ersatzkraft (M=0)	Level Ersatzkraft (M = 0)
Ersatz kraft	Ersatzkraft
Loads	Lasten
Force	Kraft
UDL	UDL
Factors toe depth	Beiwerte Fußtiefe
Passive βmob	Passives βmob
Distribution Ch	Verteilung Ch
Calculation summary	Berechnungszusammenfassung
Toe depth	Fußtiefe
tfix	tfix
Toe depth	Fußtiefe
User choices	Benutzerauswahl
Corrosion	Korrosion
Impact	Aufprall
Seabed	Meeresboden
Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze

ECONNECT EXCELERATE ENERGY	Struktur	IMDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 51 of 83

Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption
Applied toe depth	Angewandte Fußtiefe
Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Nr.
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne

- 2. Abbildung 25.
- 3. Bei einer Stärke von 2,75 m SKN wurden eine Kraft von F = 1.126 + 169 = 1.295 kN und Beiwerte von 1,20 für die veränderliche Einwirkung und 1,15 für den Erddruck verwendet, und das daraus resultierende maximale Biegemoment wird dem DMC-Blum-Tabellenblatt entnommen.

8.4.1 SLS-Nachweis der Pfahleinspannung und ULS-Nachweis der Pfahlstabilität

Der ULS-Nachweis der Pfahlstabilität wird für die Wellenverhältnisse im 100-jährlichen Wiederkehrzeitraum (jährliche Überschreitungswahrscheinlichkeit von 1/100 und Wahrscheinlichkeit von 9,6 %) durchgeführt, mit Beiwerten von 1,20 für die veränderliche Einwirkung und von 1,15 für den Erddruck.

Die maßgebliche Kombination ist CMB1. Die erforderliche Fußtiefe beträgt -26,27 m SKN. Siehe Abbildung

Levels	Höhen
Pile top	Pfahlspitze
Impact high	Aufprall hoch
Impact low	Aufprall niedrig
Water line	Wasserlinie
Seabed high	Meeresboden hoch
Seabed nom	Meeresboden Nennhöhe
Seabed low	Meeresboden niedrig
Soil profile bottom	Bodenprofil unten
Seabed	Meeresboden
Impact	Aufprall
Level Mmax (V=0)	Level Mmax (V = 0)
Mmax	Mmax
Level Ersatzkraft (M=0)	Level Ersatzkraft (M = 0)
Ersatz kraft	Ersatzkraft
Loads	Lasten
Force	Kraft

TES Code: TES-WHV-VGN-FSRU

Struktur

TES Proj. No.: TES-WHV-VGN

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

Page 52 of 83

Factors toe depth $ Passive \; \beta_{mob} $	Beiwerte Fußtiefe Passives β _{mob}
· · · · · · · · · · · · · · · · · · ·	· ·
Distribution C _h	Verteilung C _h
Calculation summary	Berechnungszusammenfassung
Toe depth	Fußtiefe
\mathbf{t}_{fix}	t _{fix}
Toe depth	Fußtiefe
User choices	Benutzerauswahl
Corrosion	Korrosion
Impact	Aufprall
Seabed	Meeresboden
Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze
Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption
Applied toe depth	Angewandte Fußtiefe
Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Nr.
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne

Abbildung 26.

Struktur

TES Proj. No.: TES-WHV-VGN

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

TES Code: TES-WHV-VGN-FSRU

Page 53 of 83

		Levels			Loads		l	Jser choice	es
	Pile top	12.00	[mSKN]	Force	966	[kN]	Corrosion	No	
İr	npact high	9.36	[mSKN]	UDL	0.0	[kN/m2]	Impact	High	
I	mpact low	1.17	[mSKN]	E	128	[kNm]	Seabed	Low	
	Water line	7.16	[mSKN]	T T			Soil	LoChar	
Se	eabed high	-10.80	[mSKN]	Fact	ors toe d	epth	PSFs Soil	Char	
Se	abed nom	-10.80	[mSKN]	Passive β _{mob}	1.00	STR/GEO	Soil type (class 4)	Sand mode	rately/dens
S	eabed low	-12.30	[mSKN]	Distribution C _h	0.50	[-]	Kolkschutzschutting	Ohne	
Soil pro	file bottom	-70.00	[mSKN]	T T				·	
	"			Calcu	lation sur	nmary	Displacement@TOP	1016.7	[mm]
	Seabed	-12.30	[mSKN]	t0	11.64	[m]	Displacement@IP	903	[mm]
	Impact	9.36	[mSKN]	Δt	1.76	[m]	Stiffness@IP	1070	[kN/m]
Level M	max (V=0)	-17.30	[mSKN]	Toe depth	-25.70	[mSKN]	Energy absorption	436	[kNm]
	Mmax	29476	[kNm]	0.2*t0	2.33	[m]	Applied toe depth	-32.00	[mSKN]
vel Ersatzl	kraft (M=0)	-23.94	[mSKN]	t _{fix}	2.33	[m]	Total pile length	44.00	[m]
E	Ersatzkraft	11550	[kN]	Toe depth	-26.27	mSKN]	Total pile weight	78.7	[t]

LISAIZMAIL 11990 [NV]	Toe depth20.27	Total pile weight 70.7 [t]		
Levels	Höhe	Höhen		
Pile top	Pfahls	Pfahlspitze		
Impact high	Aufpra	all hoch		
Impact low	Aufpra	all niedrig		
Water line	Wass	erlinie		
Seabed high	Meere	Meeresboden hoch		
Seabed nom	Meere	esboden Nennhöhe		
Seabed low	Meere	esboden niedrig		
Soil profile bottom	Boder	nprofil unten		
Seabed	Meere	esboden		
Impact	Aufpra	all		
Level Mmax (V=0)	Level	Level Mmax (V = 0)		
Mmax	Mmax	Mmax		
Level Ersatzkraft (M=0)	Level	Level Ersatzkraft (M = 0)		
Ersatz kraft	Ersatz	Ersatzkraft		
Loads	Laste	Lasten		
Force	Kraft	Kraft		
UDL	UDL	UDL		
Factors toe depth		Beiwerte Fußtiefe		
Passive β_{mob}	Passi	ves β _{mob}		
Distribution C _h	Vertei	lung C _h		
Calculation summary	Bered	chnungszusammenfassung		
Toe depth	Fußtie	efe		
t_{fix}	t _{fix}			
Toe depth	Fußtie	Fußtiefe		
User choices	Benu	tzerauswahl		
Corrosion	Korro	Korrosion		
Impact	Aufpra	Aufprall		
Seabed	Meere	Meeresboden		

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 54 of 83

Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze
Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption
Applied toe depth	Angewandte Fußtiefe
Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Nr.
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne

Abbildung 26 ULS-Nachweis der Pfahlstabilität

Der SLS-Nachweis der Pfahleinspannung wird für die Wellenverhältnisse im 10-jährlichen Wiederkehrzeitraum (jährliche Überschreitungswahrscheinlichkeit von 1/10 und somit Wahrscheinlichkeit von 65,1 %) durchgeführt, ohne Beiwerte. Grund dafür ist, dass der SLS-Nachweis der Pfahleinspannung mit normalen Bedingungen korreliert werden soll. Siehe auch Abschnitt 8.3.

Die maximale Reaktionskraft auf die Pfähle für die Wellenverhältnisse mit einem 10-jährlichen Wiederkehrintervall beträgt 241 kN. Siehe auch

Results pile forces at varying stiffness, Hs = 1.7m, dir = "head on"	Ergebnisse auf Pfähle einwirkende Kräfte bei versch. Steifigkeit, Hs = 1,7 m, Richtung = "vorlich"
Total maximum pile force in [kN]	Max. auf Pfahl einwirkende Kraft in [kN]
Pile stiffness in kN/m	Pfahlsteifigkeit in kN/m

Abbildung 30. Diese Kräfte wurden allerdings für eine vorliche Wellenrichtung bestimmt. Folglich wird nun in einem konservativen Ansatz die maximale Reaktionskraft als gleich dem beliebigen Wert von 500 kN angenommen. Nun wird die minimale erforderliche Pfahltiefe zu –27,95 m SKN. Siehe

Levels	Höhen
Pile top	Pfahlspitze
Impact high	Aufprall hoch
Impact low	Aufprall niedrig
Water line	Wasserlinie
Seabed high	Meeresboden hoch
Seabed nom	Meeresboden Nennhöhe

Struktur

TES Proj. No.: TES-WHV-VGN

Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00

TES Code: TES-WHV-VGN-FSRU

Page 55 of 83

Seabed low	Meeresboden niedrig
Soil profile bottom	Bodenprofil unten
Seabed	Meeresboden
Impact	Aufprall
Level Mmax (V=0)	Level Mmax (V = 0)
Ersatz kraft	Ersatzkraft
Loads	Lasten
Force	Kraft
UDL	UDL
Factors toe depth	Beiwerte Fußtiefe
Passive β _{mob}	Passives β _{mob}
Distribution C _h	Verteilung C _h
Calculation summary	Berechnungszusammenfassung
Toe depth	Fußtiefe
t _{fix}	t _{fix}
Toe depth	Fußtiefe
User choices	Benutzerauswahl
Corrosion	Korrosion
Impact	Aufprall
Seabed	Meeresboden
Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze
Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption
Applied toe depth	Angewandte Fußtiefe
Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Nr.
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Char Sand moderately/dense	Char Sand mitteldicht/dicht

ECONNECT EXCELERATE ENERGY	Struktur	IMDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 56 of 83

Die angewandte Fußtiefe beträgt -32 m SKN, sodass ein bequemer Einheitsnachweis von (+12,00 - (-27,95)) / (+12,00 - (-32,00)) = 0,90 verbleibt.

		Levels			Loads		l	lser choice	es
	Pile top	12.00	[mSKN]	Force	500	[kN]	Corrosion	No	
Impa	act high	9.36	[mSKN]	UDL	0.0	[kN/m2]	Impact	High	
Imp	act low	1.17	[mSKN]	E	128	[kNm]	Seabed	Low	
Wa	ater line	7.16	[mSKN]				Soil	LoChar	
Seab	ed high	-10.80	[mSKN]	Fac	tors toe d	epth	PSFs Soil	Char	
Seab	ed nom	-10.80	[mSKN]	Passive β _{mob}	0.33	SLS	Soil type (class 4)	Sand mod	rately/dens
Sea	bed low	-12.30	[mSKN]	Distribution C _h	0.50	[-]	Kolkschutzschutting	Ohne	
Soil profile	bottom	-70.00	[mSKN]						
	ľ			Calcu	lation sur	nmary	Displacement@TOP	353.4	[mm]
	Seabed	-12.30	[mSKN]	t0	8.77	[m]	Displacement@IP	311	[mm]
	Impact	9.36	[mSKN]	Δt	1.51	[m]	Stiffness@IP	1607	[kN/m]
Level Mma	x (V=0)	-15.93	[mSKN]	Toe depth	-22.58	[mSKN]	Energy absorption	78	[kNm]
	Mmax	12107	[kNm]	0.2*t0	1.75	[m]	Applied toe depth	-32.00	[mSKN]
el Ersatzkraf	t (M=0)	-21.07	[mSKN]	t _{fix}	6.88	[m]	Total pile length	44.00	[m]
Ers	atzkraft	6154	[kN]	Toe depth	-27.95	[mSKN]	Total pile weight	78.7	[t]

Levels	Höhen		
Pile top	Pfahlspitze		
Impact high	Aufprall hoch		
Impact low	Aufprall niedrig		
Water line	Wasserlinie		
Seabed high	Meeresboden hoch		
Seabed nom	Meeresboden Nennhöhe		
Seabed low	Meeresboden niedrig		
Soil profile bottom	Bodenprofil unten		
Seabed	Meeresboden		
Impact	Aufprall		
Level Mmax (V=0)	Level Mmax (V = 0)		
Ersatz kraft	Ersatzkraft		
Loads	Lasten		
Force	Kraft		
UDL	UDL		
Factors toe depth	Beiwerte Fußtiefe		
Passive β_{mob}	Passives β _{mob}		
Distribution C _h	Verteilung Ch		
Calculation summary	Berechnungszusammenfassung		
Toe depth	Fußtiefe		
t _{fix}	tfix		
Toe depth	Fußtiefe		
User choices	Benutzerauswahl		
Corrosion	Korrosion		
Impact	Aufprall		
Seabed	Meeresboden		

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 57 of 83

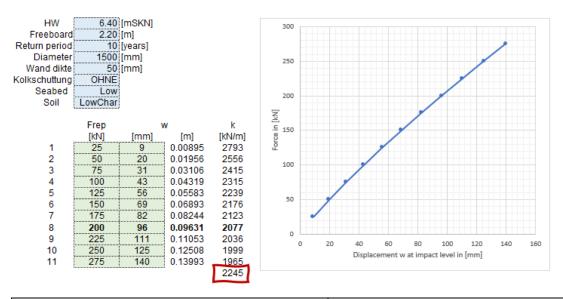
Soil	Boden
PSFs Soil	Sicherheitsbeiwerte Boden
Soil type (class 4)	Bodentyp (Klasse 4)
Kolkschutzschutting	Kolkschutzschüttung
Displacement@TOP	Verschiebung an Spitze
Displacement@IP	Verschiebung an Aufprallpunkt
Stiffness@IP	Steifigkeit an Aufprallpunkt
Energy absorption	Energieabsorption
Applied toe depth	Angewandte Fußtiefe
Total pile length	Pfahlgesamtlänge
Total pile weight	Pfahlgesamtgewicht
No	Nr.
Low	Niedrig
High	Hoch
HiChar	HoChar
Char	Char
Sand moderately/dense	Sand mitteldicht/dicht
Ohne	Ohne

Abbildung 27 SLS-Nachweis der Pfahleinspannung

8.4.2 Grenzzustand der Ermüdung

Zur Ermittlung der maßgeblichen Kräfte im Grenzzustand der Ermüdung wurde der gleiche Ansatz verfolgt wie für den STR/GEO-Grenzzustand. Die Systemantwort des Ansys-AQWA-Modells (Pfahlreaktionskraft in kN als Funktion der Pfahlsteifigkeit in kN/m) wurde anhand von Modelldurchläufen mit definierenden Steifigkeiten erarbeitet. Diese definierenden Steifigkeiten sind diejenigen Steifigkeiten bei niedriger und hoher Aufprallstärke sowie diejenige Steifigkeit von 5.000 kN/m, die die höchste Reaktionskraft bei 241 kN ergeben.

Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
MIT	MIT
High	Hoch
HiChar	HoChar
Frep [kN]	F _{rep} [kN]

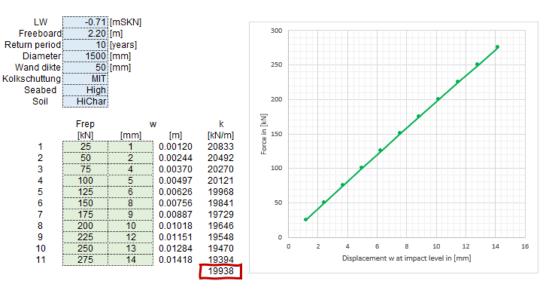

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 58 of 83

Froce in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

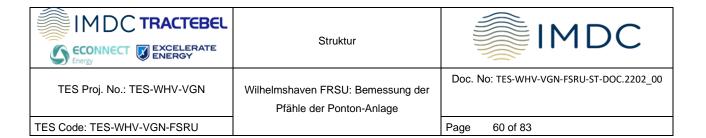
Abbildung 28 zeigt das Kraftverschiebungsdiagramm, das mit dem DMC-Blum-Tabellenblatt erstellt wurde und aus dem die Pfahlsteifigkeit bei hoher Aufprallstärke (im Ansys-AQWA-Modell verwendet) abgeleitet wurde.

Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
OHNE	OHNE
Low	Niedrig
LowChar	NieChar
Frep [kN]	F _{rep} [kN]
Froce in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

Abbildung 29 zeigt das Kraftverschiebungsdiagramm, das mit dem DMC-Blum-Tabellenblatt erstellt wurde und aus dem die Pfahlsteifigkeit bei niedriger Aufprallstärke (im Ansys-AQWA-Modell verwendet) abgeleitet wurde.

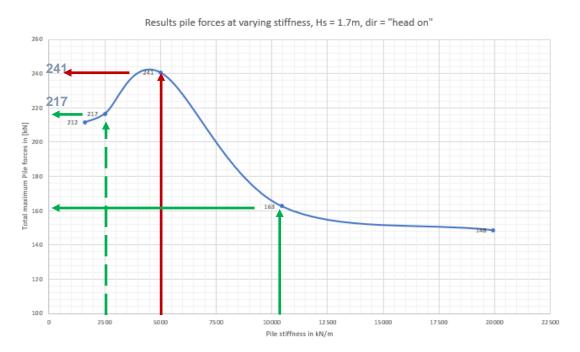


Freeboard	Freibord	



Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
MIT	MIT
High	Hoch
HiChar	HoChar
Frep [kN]	F _{rep} [kN]
Froce in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

Abbildung 28 Pfahlsteifigkeit bei hoher Aufprallstärke



Freeboard	Freibord
Return period	Wiederkehrintervall
Diameter	Durchmesser
Wand dikte	Wanddicke
Kolkschuttung	Kolkschutzschüttung
Seabed	Meeresboden
Soil	Boden
OHNE	OHNE
Low	Niedrig
LowChar	NieChar
Frep [kN]	F _{rep} [kN]

Froce in [kN]	Kraft in [kN]
Displacement w at impact level in [mm]	Verschiebung w bei Aufprall in [mm]

Abbildung 29 Pfahlsteifigkeit bei niedriger Aufprallstärke

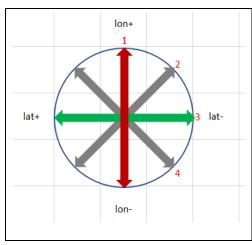

Results pile forces at varying stiffness, Hs = 1.7m, dir = "head on"	Ergebnisse auf Pfähle einwirkende Kräfte bei versch. Steifigkeit, Hs = 1,7 m, Richtung = "vorlich"
Total maximum pile force in [kN]	Max. auf Pfahl einwirkende Kraft in [kN]
Pile stiffness in kN/m	Pfahlsteifigkeit in kN/m

Abbildung 30 Pfahlreaktionskraft als Funktion der Pfahlsteifigkeit im Grenzzustand der Ermüdung

Die Pfähle schwanken hin und her, wobei die Spannung von maximal positiv zu maximal negativ wechselt (oder umgekehrt). Im Grenzzustand der Ermüdung wird der Reaktionskraftbereich berücksichtigt (statt der maximalen Reaktionskraft), wodurch sich ein Spannungsbereich ergibt. Dieser ist im Hinblick auf den in Ref. [1] bestimmten maximal zulässigen Spannungsbereich nachzuweisen.

Das Ergebnis der Durchgänge des Ansys-AQWA-Modells ist pro Pfahl, Reaktionskräfte in Längsrichtung (x-Achse des Pontons) und Querrichtung (y-Achse des Pontons) zu verstehen. In beiden Richtungen werden der maximale positive Wert und der maximale negative Wert angegeben. Der Bereich der maximalen Reaktionskraft wird anhand der Formeln ermittelt, die in Abbildung 31 aufgeführt sind.

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 61 of 83

Maximum aus:

- 1. lon+ + lon-
- 2. $\sqrt{(lon+^2+ lat-^2)} + \sqrt{(lon-^2+ lat+^2)}$ 3. lat+ + lat-4. $\sqrt{(lon-^2+ lat-^2)} + \sqrt{(lon+^2+ lat+^2)}$

lon+ und lon- sind die Reaktionskräfte in Längsrichtung des Pontons (x-Richtung)

lat+ und lat- sind die Reaktionskräfte in Querrichtung des Pontons (y-Richtung)

Abbildung 31 Bestimmung des Bereichs der maximalen Reaktionskraft für Ermüdung

Kräfte in		19938	10434	5000	2500	1599
	Si1	168	215	342	313	308
ΓVI	Si2	160	206	325	297	292
윤	Si3	154	197	311	284	278
Side	Si4	156	189	307	284	277
	Si5	161	194	319	298	294
	Si6	167	202	335	315	313
_	S1	194	247	408	363	356
Stern	S2	198	253	424	370	360
Š	S3	202	260	440	378	365
Bow	B1	191	231	400	368	371
	B2	198	239	416	376	375
	В3	209	247	433	384	380
	MAX	209	260	440	384	380

Side	Seite	
Stern	Heck	
Bow	Bug	
MAX	MAX	
Pile forces in kN	Auf Pfähle einwirkende Kräfte in kN	
Stiffness of pile supports in kN/m	Steifigkeit der Führungspfähle in kN/m	
Series1	Serie 1	
Series 2	Serie 2	

Tabelle 5 Maximale Reaktionskraftbereiche pro Pfahl in kN für mehrere Steifigkeitsdurchgänge

Side	Seite
Stern	Heck

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 62 of 83

Bow	Bug	
MAX	MAX	
Pile forces in kN	Auf Pfähle einwirkende Kräfte in kN	
Stiffness of pile supports in kN/m	Steifigkeit der Führungspfähle in kN/m	
Series1	Serie 1	
Series 2	Serie 2	

Tabelle 5 zeigt die Reaktionskräfte in kN für die 12 Pfähle (siehe Abbildung 2 bezüglich der Nummerierung der Pfähle) für die Pfahlsteifigkeiten 19.938, 10.434, 5.000, 2.500 und 1.599 kN/m. Der maximale Kraftbereich tritt in Pfahl S3 für eine Pfahlsteifigkeit von 5.000 kN/m auf.

Pile forces in kN	Auf Pfähle einwirkende Kräfte in kN
Stiffness of pile supports in kN/m	Steifigkeit der Führungspfähle in kN/m

Abbildung 32 zeigt Diagramme sowohl für die maximalen Reaktionskräfte (

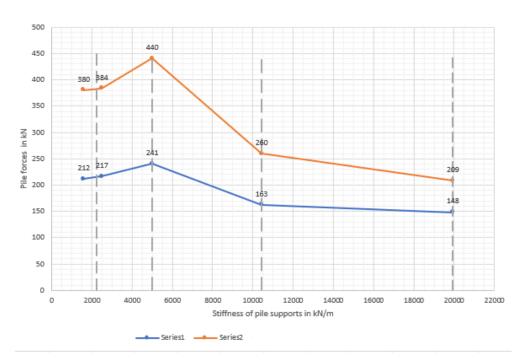

Results pile forces at varying stiffness, Hs = 1.7m, dir = "head on"	Ergebnisse auf Pfähle einwirkende Kräfte bei versch. Steifigkeit, Hs = 1,7 m, Richtung = "vorlich"	
Total maximum pile force in [kN]	Max. auf Pfahl einwirkende Kraft in [kN]	
Pile stiffness in kN/m	Pfahlsteifigkeit in kN/m	

Abbildung 30) als auch für die maximalen Reaktionskraftbereiche (

Side	Seite
Stern	Heck
Bow	Bug
MAX	MAX
Pile forces in kN	Auf Pfähle einwirkende Kräfte in kN
Stiffness of pile supports in kN/m	Steifigkeit der Führungspfähle in kN/m
Series1	Serie 1
Series 2	Serie 2

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 63 of 83

Tabelle 5). Es wurde festgestellt, dass die in Abbildung 31 gezeigte verwendete Methode einen niedrigeren Reaktionskraftbereich als das Zweifache der maximalen Reaktionskraft ergibt.

Pile forces in kN	Auf Pfähle einwirkende Kräfte in kN
Stiffness of pile supports in kN/m	Steifigkeit der Führungspfähle in kN/m

Abbildung 32 Auf die Pfähle einwirkende Kräfte als Funktion der Pfahlsteifigkeit

Für die Extremstärken und Spitzenbereiche wird das BLUM-Tabellenblatt zur Ermittlung der maximalen Momente im Pfahl verwendet. Dabei werden auch Kombinationen von Bodenparametern (niedrig, mittel und hoch) und das Meeresbodenniveau (hoch und niedrig) berücksichtigt. Diese Kombinationen und die daraus resultierenden Spannungsbereiche werden in

Stiffness	Steifigkeit
Impact	Aufprall
Seabed	Meeresboden
Low	Niedrig
High	Hoch
LoChar	NieChar
HiChar	HoChar

Tabelle 6 gezeigt.

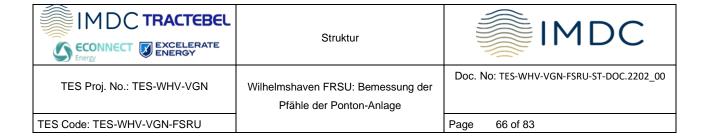
ECONNECT EXCELERATE ENERGY	Struktur	IMDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 64 of 83

W_el=	7.99E+07	[mm3]								
CMB	Stiffness	ΔF	Impact	Seabed	Soil	chutzschi	F	Fw+c	Moment	Stress
[-]	[kN/m]	[kN]	[mSKN]	[-]	[-]	[-]	[kN]	[kN]	[kNm]	[N/mm2]
1	2055	384	8.60	Low	LoChar	Ohne	192	23	4832	121
2	5001	440	2.02	Low	LoChar	Ohne	220	26	3990	100
3	4999	440	2.18	Low	LoChar	Mit	220	26	3911	98
4	5002	440	4.44	High	HiChar	Ohne	220	26	4107	103
5	5000	440	8.24	High	HiChar	Mit	220	26	4696	118
6	10250	260	4.19	High	HiChar	Mit	130	16	2194	55
7	18511	209	1.49	High	HiChar	Mit	105	13	1454	36

Stiffness	Steifigkeit
Impact	Aufprall
Seabed	Meeresboden
Low	Niedrig
High	Hoch
LoChar	NieChar
HiChar	HoChar

Tabelle 6 Resultierende Spannungen bei Steifigkeiten mit maximaler, hoher und niedriger Aufprallstärke für den Grenzzustand der Ermüdung (T = 10 Jahre)

8.4.3 Eiseinwirkung


Die Eiseinwirkung wurde in Übereinstimmung mit Abschnitt 4.11.2 und 4.11.3.1 von Ref. [19] berücksichtigt. Hinsichtlich einer Betrachtung der zur Berechnung der Eiskraft relevanten Parameter wird auf Ref. [1] verwiesen. Da der Pfahl auch im Hinblick auf höhere Kräfte und Aufprallstärken bewertet wurde, wird gefolgert, dass die Eiseinwirkung nicht maßgeblich ist.

Porosität	292	[‰]
Salzgehalt (Tab. 4.13)	12	[‰]
Temperatur an der Unterseite der Eisschicht	-2,0	[°C]
Temperatur an der Oberseite der Eisschicht	1,0	[°C]
Durchschnittliche Eistemperatur	1,5	[°C]
Eisdruckfestigkeit	0,926	[MN/m ²]
Spezifische Dehnungsgeschwindigkeit	0,001	[s-1]

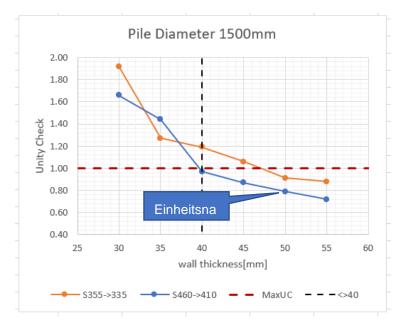
ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 65 of 83

Durchschnittliche Leinenlast	0,122	[MN/m]
Kontaktkoeffizient	0,33	[-]
Eisdicke (Tab. 4.14)	0,40	[m]
Ponton-Länge	67	[m]
Anzahl der eisdruckbeständigen Pfähle	12	[m]
Kraft per Dalben	683	[kN]

Tabelle 7 Numerische Werte der Parameter zur Berechnung der Eiseinwirkung

9. ERGEBNISSE

Wichtige Hinweise


- Es gelten strenge Vorgaben für die Herstellung und Installation.
- Nichtvertikalität der Pfähle und andere Unregelmäßigkeiten führen zu zusätzlichen Kräften auf die Pfähle, da sie eine ungleiche Lastverteilung mit sich bringen.

9.1 STR/GEO-Ergebnisse und Grenzzustand der Ermüdung

Es wurde gefolgert, dass für den Abschnittsnachweis im STR/GEO-Grenzzustand die Kombination 4 maßgeblich ist.

Pile Diameter 1500mm	Pfahldurchmesser 1.500 mm
Unity Check	Einheitsnachweis (Unity Check)
wall thickness [mm]	Wanddicke [mm]
MaxUC	MaxUC

Abbildung 33 zeigt die Einheitsnachweise für die Wanddicken von 30 bis 60 mm für 1.500 mm Durchmesser und für 2 Stahlgüten, S355 und S460, in Kombination 4. Ab und über t = 40 mm haben diese Qualitäten eine reduzierte Streckgrenze. Zu beachten ist, dass sowohl die Wanddicke als auch die Stahlqualität die Klasse des Abschnitts und somit den Einheitsnachweis beeinflussen.

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 67 of 83

Pile Diameter 1500mm	Pfahldurchmesser 1.500 mm
Unity Check	Einheitsnachweis (Unity Check)
wall thickness [mm]	Wanddicke [mm]
MaxUC	MaxUC

Abbildung 33 Einheitsnachweise für D = 1.500 und Güte S355/460

Der zulässige Bereich der Ermüdungsspannung wurde in Ref. [1] bestimmt. Er beträgt 130 N/mm². In

Stiffness	Steifigkeit
Impact	Aufprall
Seabed	Meeresboden
Low	Niedrig
High	Hoch
LoChar	NieChar
HiChar	HoChar

Tabelle 6 kann beobachtet werden, dass der maximale eintretende Spannungsbereich 121 N/mm² beträgt. Der Ermüdungsnachweis ist folglich zufriedenstellend.

In Abschnitt 8.4.1 wurde festgestellt, dass die Pfahleinspannung im SLS und die Pfahlstabilität im ULS zufriedenstellend sind. Oder, einfach ausgedrückt: Die Nachweise zeigen, dass die Pfähle tief genug sind.

In dieser Phase, in der die Widerstandsfähigkeit der maßgebliche Bemessungsfaktor ist, erachtet DMC die nachstehende Option für durchführbar, wenn der STR/GEO-Grenzzustand (ULS), der Grenzzustand der Gebrauchstauglichkeit (SLS) und die Ermüdung berücksichtigt werden.

Teil	Länge [m]	D-t [mm]	Stahlqualität
Oben	16	D1500-50	S355
Mitte	22	D1500-50	S460
Unten	6	D1500-50	S355

9.2 Zusätzliche Analysen

Es wurden folgende zusätzlichen Analysen durchgeführt:

- 1. Einfluss des unteren niedrigen charakteristischen Werts des inneren Reibungswinkels von Schicht L5
- 2. Abschnittsnachweis im STR/GEO bei Niedrigwasser Güte S355 mit Lochfraßkorrosion
- 3. Nachweis Grenzzustand der Ermüdung bei Niedrigwasser durch Vergleich maximales Biegemoment im Boden mit Biegemoment bei Niedrigwasser
- 4. Einfluss der Axialkraft aufgrund des Pfahlgewichts und der abwärts gerichteten Reibung zwischen dem Pfahl und dem Ponton
- 5. Gruppenwirkung

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 68 of 83

9.2.1 Innerer Reibungswinkel ϕ = 32,5° (NieChar) für Schicht L5

Der Reibungswinkel geht in den unteren Werten über 35 , weswegen das DMC-Blum-Tabellenblatt durch die Eingabe eines inneren Reibungswinkels von 32,5° für Schicht L5 geändert wurde. Zu beachten ist, dass die Pfahltiefe bei −32,0 m SKN liegt, sodass die Schichten L6 und L7 für die Pfahlbemessung nicht relevant sind. Die Auswirkungen der Verwendung eines Werts von 32° für Schicht L5 anstelle von 37,40 sind unerheblich.

Soil profil	e						
		Layer-	Le	vel	LoChar	Expected	HiChar
ID	Name	thickness	Тор	Bottom		Friction ange	I
		[m]	[mSKN]	[mSKN]		[DEG]	
1	L1	2.63	-12.30	-13.43	25.00	25.00	30.00
2	L2	3.07	-13.43	-16.50	25.00	27.50	30.00
3	L3	6.78	-16.50	-23.28	31.00	35.40	37.00
4	L4	6.52	-23.28	-29.80	32.50	34.60	37.00
5	L5	7.98	-29.80	-37.78	37.40	38.00	42.00
6	L6	2.80	-37.78	-40.58	34.20	35.00	37.10
7	L7	10.60	-40.58	-51.18	37.60	38.40	39.90
oil profile					Bodenprofil		
)					ID		
ame					Bezeichnung		
ayer-thickne	ss [m]				Schichtdicke	[m]	
evel					Wasserstand		
ор					Oben		
ottom					Unten		
Char					NieChar		
pected					Erwartet		
Char					HoChar		
iction angel	[DEG]				Reibungswin	kel [Grad]	

Tabelle 8 Bodenprofil (niedriger Meeresboden) mit charakteristischen Werten für den inneren Reibungswinkel

9.2.2 STR/GEO-Grenzzustandsprüfung bei Niedrigwasser

Der Schwerpunkt der STR/GEO-Grenzzustandsprüfung war das maximale Biegemoment. Dieses maximale Biegemoment tritt im Boden auf, wo die Korrosionsraten niedrig sind. Rund um die Niedrigwassermarke ist die Korrosion wesentlich gravierender. Aus Ref. [23] geht hervor, dass Korrosionsraten von über 1 mm pro Jahr verzeichnet wurden.

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 69 of 83

2.2.4 Low Water Zone (0.5 m Below MLWS to LAT)

Corrosion in this zone is relatively severe due to differential aeration at the uppermost point of continuous steel immersion, where electrolyte is permanent and oxygen levels peak. Corrosion rates of 0.08 to 0.17 mm/side/year are typical, but they can become very severe (concentrated) due to MIC by SRB and/or metal-reducing bacteria (MRB). With ALWC, typical corrosion rates of 0.5 mm/side/year can be

expected, and rates in excess of 1 mm/side/year have been reported.

2.2.4 Low Waler Zone (0.5 in Below MLWS to LAT)	2.2.4 Niedrigwasserzone (0,5 m unter MSpNW bis LAT)
Corrosion in this zone is relatively severe due to differential aeration at the uppermost point of continuous steel immersion, where electrolyte is permanent and oxygen levels peak. Corrosion rales of 0.08 to 0.17 mm/side/year are typical, but they can become very severe (concentrated) due to MIC by SRB and/or metal-reducing bacteria (MRB). With ALWC, typical corrosion rates of 0.5 mm/side/year can be expected, and rales in excess of 1 mm/side/year have been reported.	In dieser Zone kommt es zu vergleichsweise starker Korrosion. Dies liegt an der wechselhaften Belüftung am obersten dauerhaften Stahleintauchpunkt. Damit ist der Stahl permanent dem Meerwasser als Elektrolyt ausgesetzt. Zudem erreicht der Sauerstoffgehalt dort Spitzenwerte. Typische Abrostungsraten betragen 0,08 bis 0,17 mm/Seite/Jahr. Infolge schwefel- (SRB) und/oder metallreduzierender Bakterien (MRB) kann es jedoch zu sehr starker (konzentrierter) mikrobiell beeinflusster Korrosion (MIC) kommen. Bei beschleunigter Korrosion in der Niedrigwasserzone (ALWC) sind typische Abrostungsraten von 0,50 mm/Seite/Jahr zu erwarten. Es werden auch Raten von über 1,00mm/Seite/Jahr berichtet.

Tabelle 9 Auszug aus Ref. [23]

Zudem hat der Pfahl bei Niedrigwasser die Güte S355. Es wurde ein Nachweis mit dem DMC-Blum-Tabellenblatt bei einer Niedrigwasserkorrosion von $10 \times 1,0 = 10$ mm Korrosion und einer Streckgrenze von 335 N/mm² und in der maßgeblichen Kombination 4 durchgeführt. Der Einheitsnachweis für den oberen Abschnitt von 16 Meter Länge mit Güte S355 ergibt 0,53 und ist somit zufriedenstellend.

9.2.3 Nachweis des Grenzzustands der Ermüdung bei Niedrigwasser

Die S-N-Kurve, die in den Ermüdungsanalysen verwendet wurde, ist Kurve F aus Ref. [14] mit einem Spannungskonzentrationsfaktor von 1,27. Siehe Ref. [1]. Diese Tabelle ist für Stahlelemente mit kathodischem Korrosionsschutz in Meerwasser geeignet. Gravierende Korrosion tritt meist im Niedrigwasserbereich auf, der zwischen nass und trocken wechselt. Für diesen Bereich gilt eine höhere Spannungskonzentration.

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 70 of 83

2.4.5 S-N curves in seawater with cathodic protection

S-N curves for seawater environment with cathodic protection are given in Table 2-2 and Figure 2-8. The T curve is shown in Figure 2-9. For shape of S-N curves see also comment in 2.4.4.

S-N curve	N ≤10	⁶ cycles	$N > 10^{6}$ cycles	Fatigue limit at 10 cycles*)	Thickness exponent k	Stress concentration in the S-N detail as derived
	ml	$\log \overline{a}_{1}$	$\log \overline{a}_2$ $m_2 = 5.0$			by the hot spot method
B1	4.0	14.917	17.146	106.97	0	
B2	4.0	14.685	16.856	93.59	0	
C	3.0	12.192	16.320	73.10	0.15	
C1	3.0	12.049	16.081	65.50	0.15	
C2	3.0	11.901	15.835	58.48	0.15	
D	3.0	11.764	15.606	52.63	0.20	1.00
E	3.0	11.610	15.350	46.78	0.20	1.13
F	3.0	11.455	15.091	41.52	0.25	1.27
F1	3.0	11.299	14.832	30.84	0.25	1.43
F3	3.0	11.146	14.576	32.75	0.25	1.61
G	3.0	10.998	14.330	29.24	0.25	1.80
W1	3.0	10.861	14.101	26.32	0.25	2.00
W2	3.0	10.707	13.845	23.39	0.25	2.25
W3	3.0	10.570	13.617	21.05	0.25	2.50
T	3.0	11.764	15.606	52.63	0.25 for SCF ≤ 10.0 0.30 for SCF >10.0	1.00

2.4.5 S-N curves in seawater with cathodic protection	2.4.5 S-N-Kurven in Meerwasser mit kathodischem Korrosionsschutz	
S-N curves for seawater environment with cathodic protection are given in Table 2-2 and Figure 2-8. The T curve is shown in Figure 2-9. For shape of S-N curves see also comment m 2.4.4.	Tabelle 2-2 und Abbildung 2-8 geben S-N-Kurven in Meerwasserumgebungen mit kathodischem Korrosionsschutz an. Die T-Kurve ist in Abbildung 2-9 dargestellt. Zur S-N-Kurvenform siehe auch den Kommentar in 2.4.4.	
Table 2-2 S-N curves in seawater with cathodic protection	Tabelle 2-2 S-N-Kurven in Meerwasser mit kathodischem Korrosionsschutz	
SV cunt	S-N-Kurve	
N <10°cycles	N ≤ 10 ⁶ Zyklen	
N> 10° cycles	N > 10 ⁶ Zyklen	
Fatigue limit at 10 ⁷ cycles*)	Ermüdungsgrenze bei 10 ⁷ Zyklen *)	
Thickness exponent k Dicken-Exponent k		
Stress concentration tn the S-N detail as derived by the hot spot method	Spannungskonzentration im S-N-Detail wie aus Hot-Spot-Methode hergeleitet	
0.25 for SCF ≤ 10.0	0,25 bei SCF ≤ 10,0	
0.30 for SCF >10.0	0,30 bei SCF > 10,0	
*) see also 2.11	*) siehe auch 2.11	

Abbildung 34 Tabelle 2.4.5 aus Ref. [14]

S-N-Kurven für den Wechsel von Luft und Seewasser ohne kathodischen Schutz sind in Ref. [14] nicht angegeben. Daher wurde folgender Ansatz gewählt. Der maßgebliche Bereich der Spannung am Ort des maximalen Biegemoments liegt bei 121 N/mm². Siehe auch Abschnitt 8.4.1 und

Stiffness	Steifigkeit
-----------	-------------

Econnect Energy	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 71 of 83

Impact	Aufprall
Seabed	Meeresboden
Low	Niedrig
High	Hoch
LoChar	NieChar
HiChar	HoChar

Tabelle 6. Wenn die auftretende Spannung bei Niedrigwasser kleiner ist als 121 / 2,0 ≈ 60 N/mm², dann ist die Ermüdung bei Niedrigwasser nicht maßgeblich. Dies ist die ingenieurmäßige Bewertung.

Das maximale Biegemoment in der maßgeblichen Kombination des Grenzzustands der Ermüdung 1 ist gleich 4.832 kNm. Das Biegemoment bei Niedrigwasser, -0.71 m SKN (T = 10), ist gleich 2.000 kNm. Die Spannung bei niedrigem Wasserstand beträgt ca. $2.000 / 4.832 \times 121 \approx 50$ N/mm².

9.2.4 Effekt zweiter Ordnung aufgrund der Axialkraft

Der Pfahl wiegt 78,7 [t]. Die Axialkraft auf den Abschnitt des maximalen Biegemoments ist gleich: $(12 - (-16,46)) / (12 - (-32)) \times 78,7 \times 9,81 \times 1,35 = 674$ kN.

Die maximale Reaktionskraft auf den Pfahl beträgt 1.295 kN (einschließlich der unmittelbar auf den Pfahl wirkenden Strömung und Wellen). Angesichts einer Reibung von 0,40 beträgt die nach unten gerichtete Reibungskraft auf den Pfahl, die noch zu den Druckkräften hinzukommt, 518 kN.

Der Axialdruck im maßgeblichen Abschnitt aufgrund des Gewichts und der Reibung beträgt $(500 + 518) \times 10^3$ / $227.294 = 5,3 \text{ N/mm}^2$. Das Biegemoment beträgt in der maßgeblichen Kombination des STR/GEO-Grenzzustands 30.883 kNm. Der Pfahl gibt nur geringfügig nach. (Der Einheitsnachweis für Klasse 3 liegt bei 1,04.) Folglich können die zusätzlichen Druckkräfte von 5,3 N/mm² außer Acht gelassen werden.

Der Effekt zweiter Ordnung des Pfahls errechnet sich aus der Axialkraft multipliziert mit der Pfahllänge multipliziert mit der Neigung (die konservativ mit 1/50 angenommen wird) und beträgt somit $\Delta M = 1.192 \times 44/50 = 1.049$ kNm. Aus dem DMC-Blum-Tabellenblatt geht hervor, dass eine zusätzliche Kraft von 1.336 – 1.295 = 41 kN auf den Pfahl angewandt werden muss, um dieses ΔM zu erreichen.

Im Ergebnis steigt das Biegemoment in der maßgeblichen Kombination 4 aufgrund des Effekts zweiter Ordnung von 30.880 kNm auf 31.929 kNm.

Bending moment times 10^3 [kN]	Biegemoment × 10³ [kN]
Curvature times 10^6 '[1/mm]	Krümmung × 10 ^{-6'} [1/mm]

Abbildung 35 zeigt, dass das gestiegene Biegemoment noch am Anfang des plastischen Zweigs liegt und der Abschnitt ihm somit standhalten kann. Dies lässt den Schluss zu, dass der Effekt zweiter Ordnung nur einen geringen Einfluss hat.

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 72 of 83

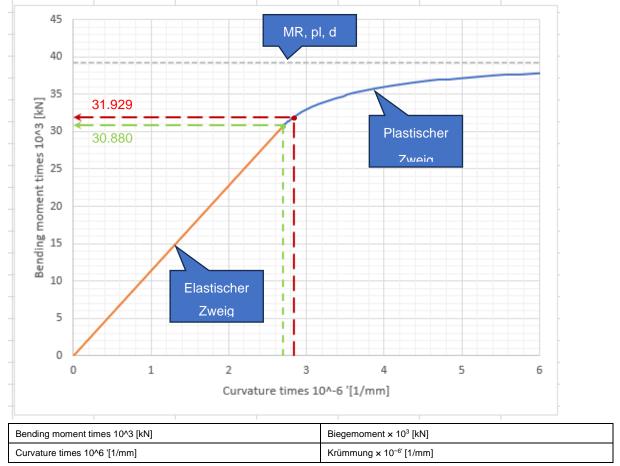


Abbildung 35 Steigerung des Biegemoments aufgrund des Effektes zweiter Ordnung der Axialkraft

9.2.5 Gruppenwirkung

Eine direkt auf die Gruppenwirkung bezogene Bewertung wurde in diesem Dokument nicht vorgenommen. Es wurde vielmehr die Sensitivität der Minderung des Erddrucks auf den Pfahl untersucht.

Blum geht von der vollständigen Mobilisierung des passiven Erddrucks aus. Wenn sich jedoch infolge einer auf den Pfahl wirkenden Reaktionskraft ein dreidimensionaler Bodenkeil (siehe

(
YAW	GIEREN	
Pitch	Stampfen	
Sway	Versetzen	
Surge	Schnellen	
Top View	Draufsicht	
Profile	Profil	
Top View	Draufsicht	
Profile	Profil	
Rotation	Rotation	
ROLL	ROLLEN	

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 73 of 83

Front View	Vorderansicht
Translations	Translationen
HEAVE	TAUCHEN
Front View	Vorderansicht

Abbildung 38) ausbildet, können sich die Bodenkeile anderer, benachbarter Pfähle überlagern. Dadurch sinkt die Fähigkeit, der Kraft zu widerstehen.

Das DMC-Blum-Tabellenblatt bietet die Möglichkeit, den vollständig mobilisierten Erddruck auf den Pfahl mit dem Faktor γR,e zu mindern (siehe

СМВ	СМВ
Stiffness	Steifigkeit
Impact	Aufprall
Seabed	Meeresboden
Soil	Boden
Moment	Moment
Section check (STR/GEO)	Abschnittsnachweis (STR/GEO)

Tabelle 4). Im STR/GEO-Grenzzustand beispielsweise entspricht der Faktor 1,15. Es wurde untersucht, wie stark dieser Faktor erhöht werden kann, bevor der Abschnittsnachweis oder der Einspannungsnachweis versagen.

Tabelle 10 zeigt die Eingabe für die Sensitivitätsanalysen.

Grenzzustand	STR/GEO	SLS
Nachweis	Abschnitt	Pfahleinspannung
Wiederkehrintervall [Jahre]	100	10
Kraft [kN]	1.200	500
Aufprallstärke EHW [m SKN]	9,36	8,60
Meeresboden	Niedrig	Niedrig
Bodenparameter	NieChar	NieChar
Kolk	JA	JA

Tabelle 10 Eingabe für die Erddruckminderung (Sensitivitätsanalysen)

Für die STR/GEO-Abschnittsprüfung (ULS) gilt danach, dass der Einheitsnachweis = 1,00 ist, wenn bei γ R,e = 3,0 (Steigerung um 161 %) die Pfahlstabilität hinreichend ist.

Für den SLS-Nachweis der Pfahleinspannung gilt danach, dass der Pfahl dann gerade tief genug ist, wenn γR,e = 3,1 (Steigerung um 210 %).

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 74 of 83

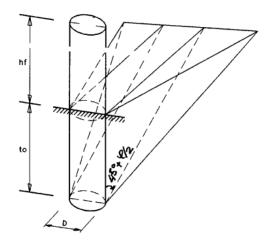
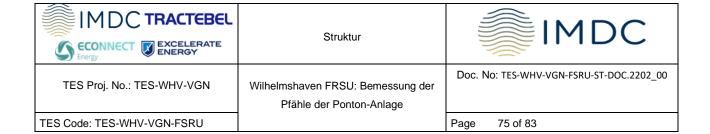
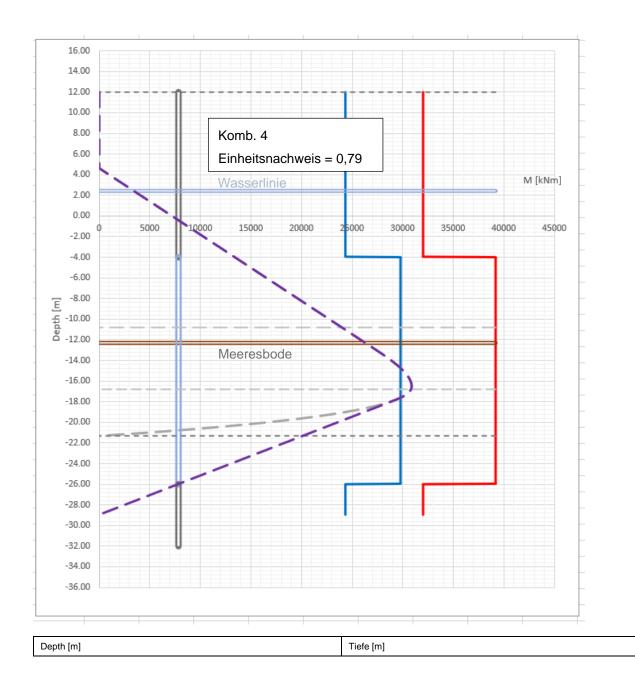




Abbildung 36 3D-Darstellung eines mobilisierten Bodenkeils

Anhang A Ausgabe DMC-BLUM-Tabellenblatt

STR/GEO-Biegemomentlinie (mit lila Punkten) samt Kapazitätslinien. Blau ist die Streckgrenze und rot die plastische Beanspruchbarkeit.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 76 of 83

Anhang B Ponton-Bewegungen

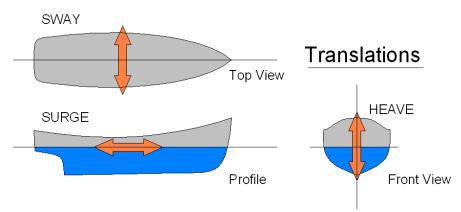
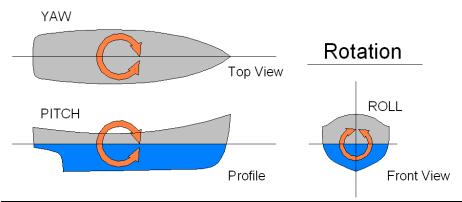



Abbildung 37 Translationen Versetzen, Schnellen und Tauchen

YAW	GIEREN
Pitch	Stampfen
Sway	Versetzen
Surge	Schnellen
Top View	Draufsicht
Profile	Profil
Top View	Draufsicht
Profile	Profil
Rotation	Rotation
ROLL	ROLLEN
Front View	Vorderansicht
Translations	Translationen
HEAVE	TAUCHEN
Front View	Vorderansicht

ECONNECT EXCELERATE ENERGY	Struktur	MDC
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 77 of 83

Abbildung 38 Rotationen: Gieren, Stampfen und Rollen

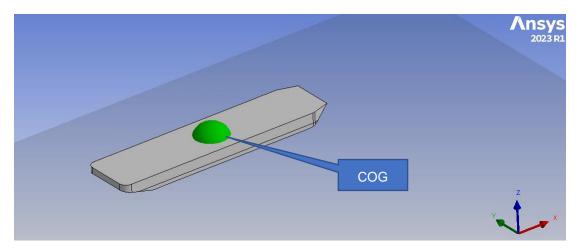
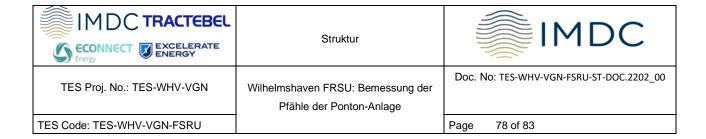



Abbildung 39 Richtungen gemäß Ansys-AQWA-Modell, Translationen des COG sind Modell-Ausgaben

Abbildung 11 Schiffsbewegungen in Bezug auf das in Ansys AQWA verwendete Achsensystem

Bewegung	Begriff	Einheit
x-Richtung	Schnellen	[mm]
y-Richtung	Versetzen	[mm]
z-Richtung	Tauchen	[mm]
Rotation um die x-Achse	Rollen	[Grad]
Rotation um die y-Achse	Stampfen	[Grad]
Rotation um die z-Achse	Gieren	[Grad]

Anhang C Geotechnische Parameter

ALP GEOTECHNIK

Offshore-Geotechnik Spezialtiefbau

Altiastengutachten Grundbaudynamik

Gerichtsgutachten Privatgutachten

Beratung | Planung | Gutachten Objekt- und Tragwerksplanung für Baugrubensicherungen Baugrund- und Gründungsgutachten

Böschungen und Stützmauern Deiche und Dämme

Vereidigte Sachverständige

Numerische Untersuchungen von Boden-Bauwerks-Wechselwirkungen

Geotechnischer Bericht

Teilprojekt: Bootsanleger (Pontoon)

Nr. 23A012.00.00 Rev.0.0
Datum 12. Dezember 2023

Bauvorhaben

LNG Terminal Wilhelmshaven (FSRU) Teilprojekt: Ponton/Bootsanleger (Pontoon)

Auftraggeber

ENGIE Deutschland AG / Tree Energy Solutions mit IMDC

erstellt durch:

Dr.-Ing. Malek Hasan

ACP Geotechnik GmbH

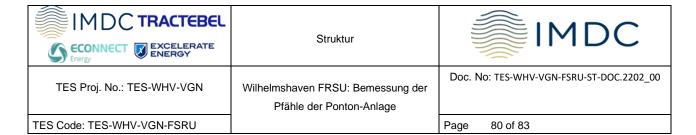
Büro Berlin Darwinstraße 15

10589 Berlin Tel.: +49 (0)30 349906-70 Fax: +49 (0)30 349906-99 E-Mail: berlin@acp-geotechnik.de web: www.acp-geotechnik.de

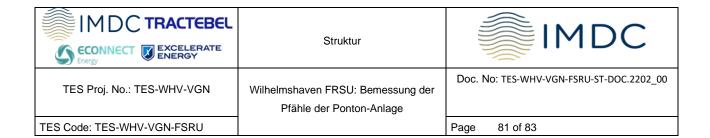
Büro Hannove Georgetr 38

Georgstr. 38
30159 Hannover
Tel.: +49 (0)511 70034930
Fax: +49 (0)511 70034937
E-Mall: hannover@acp-geotechnik.de
web: www.acp-geotechnik.de

Geschäftsführer Prof. Dr.-ing. Martin Achmus Dipl.-ing. Michael Müller Dr.-ing. Thomas Schrepfer


Registergericht

AG Charlottenburg HRB 101773 B


Bankverbindung LBB LandesBank Berlin IBAN: DE44 1005 0000 0190 0536 90 SWIFT-BIC: BELADEBEXXX

Depth under SB	er SBL		->	Saturate	Saturated density	9	Friction andel	andel	Ю	De	Delta	٥	Effective cohesior	cohesion
TOP	BOT	Δh	-	[kN/m3]		-	[DEG]	,)	[DEG])	[kN/m2]	
[m]	Ш	Ш	LoChar	Expected	HiChar	LoChar	Expected	HiChar	LoChar	Expected	HiChar	LoChar		HiChar
_	2.63	2.63	16.55	17.55	18.55	25.00	25.00		16.67	16.67	20.00	0.00	00.00	00.00
2.63	9.70	3.07	16.55	17.55	18.55	25.00	27.50	30.00	16.67	18.33	20.00	1.00	2.00	5.00
	12.48	6.78	17.05	18.55	20.05	31.00	35.40	37.00	20.67	23.60	24.67	0.00	0.00	0.00
12.48	19.00	6.52	19.05	19.55	21.05	32.50	34.60	37.00	21.67	23.07	24.67	0.00	0.00	0.00
	26.98	7.98	20.05	20.55	21.05	37.40	38.00	42.00	24.93	25.33	28.00	00.00	0.00	00.0
······	29.78	2.80	19.55	20.55	21.05	34.20	35.00	37.10	22.80	23.33	24.73	0.00	0.00	0.00
29.78	40.38	10.60	21.05	21.55	22.05	37.60	38.40	39.90	25.07	25.60	26.60	0.00	0.00	0.00
Depth under SB	er SBI		->	Saturate	Saturated density	6	Friction andel	andel	ю	Delta	ta ta	ر	Effective cohesion	ohesion
TOP	BOT	ΔΔ		[kN/m3]	•	-	[DEG])		[DEG]			[kN/m2]	
<u>E</u>	Ξ	Ξ	LoChar	Expected	HiChar	LoChar	LoChar Expected	HiChar	LoChar	Expected	HiChar	LoChar	Expected	HiChar
00.0	1.00	1.00	18.05	19.05	20.05	20.00	37.50	55.00	13.33	25.00	36.67	0.00	00.0	00.0
1.00	3.63	2.63	16.55	17.55	18.55	25.00	25.00	30.00	16.67	16.67	20.00	1.00	2.00	5.00
3.63	6.70	3.07	16.55	17.55	18.55	25.00	27.50	30.00	16.67	18.33	20.00	0.00	0.00	0.00
	13.48	87.9	17.05	18.55	20.05	31.00	35.40	37.00	20.67	23.60	24.67	0.00	00.00	0.00
13.48	20.00	6.52	19.05	19.55	21.05	32.30	34.60	38.00	21.53	23.07	25.33	0.00	0.00	0.00
	27.98	7.98	20.05	20.55	21.05	37.40	38.00	42.00	24.93	25.33	28.00	0.00	0.00	0.00
27.98	30.78	2.80	19.55	20.55	21.05	34.20	35.00	37.10	22.80	23.33	24.73	0.00	0.00	0.00
Bottom soil profile: -40,58 [mSKN] 30.78														

Ohne Kolkschutzschuttung	Ohne Kolkschutzschüttung
L1: Sand/Schluff (locker)	L1: Sand/Schluff (locker)
L2: Sand/Schluff (locker)	L2: Sand/Schluff (locker)
L3: Sand (mitteldicht)	L3: Sand (mitteldicht)
L4: Sand (mitteldicht)	L4: Sand (mitteldicht)
L5: Sand (dicht)	L5: Sand (dicht)
L6: Sand (mitteldicht)	L6: Sand (mitteldicht)
L7: Sand (dicht)	L7: Sand (dicht)
Bottom soil profile:	Bodenprofil unten:
Depth under SBL	Tiefe unter SBL
TOP	Oben
вот	Unten
Saturated density	Sättigungsdichte
Friction angel	Reibungswinkel
Delta	Delta
Effective cohesior	Effektive Kohäsion
LoChar	NieChar
Expected	Erwartet
HiChar	HoChar
Bottom soil profile:	Bodenprofil unten:
Depth under SBL	Tiefe unter SBL
TOP	TOP
вот	Unten
Saturated density	Sättigungsdichte
Friction angel	Reibungswinkel
Delta	Delta
Effective cohesior	Effektive Kohäsion
LoChar	NieChar
Expected	Erwartet
HiChar	HoChar
	I.

Anhang C Beziehung Wiederkehrintervall, Wahrscheinlichkeit und Bemessungslebensdauer

ECONNECT EXCELERATE ENERGY	Struktur	
TES Proj. No.: TES-WHV-VGN	Wilhelmshaven FRSU: Bemessung der Pfähle der Ponton-Anlage	Doc. No: TES-WHV-VGN-FSRU-ST-DOC.2202_00
TES Code: TES-WHV-VGN-FSRU		Page 82 of 83

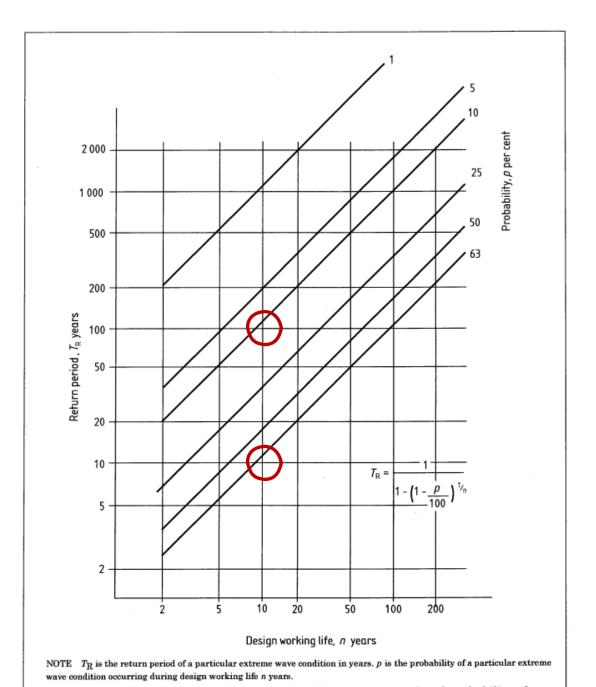
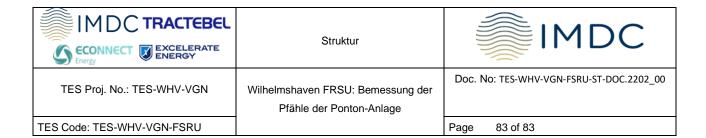



Figure 4 — Relationship between design working life, return period and probability of wave heights exceeding the normal average

Return period, T_R years	Wiederkehrintervall T_R in Jahren
Probability, P per cent	Wahrscheinlichkeit p in Prozent
Design working life, n years	Bemessungslebensdauer n in Jahren

NOTE $T_{\rm R}$ is the return period of a particular extreme wave condition in years, p is the probability of a particular extreme wave condition occurring during design working life n years.	HINWEIS: T_R gibt das Wiederkehrintervall einer bestimmten extremen Wellenbedingung in Jahren an. p ist die Wahrscheinlichkeit, dass eine bestimmte extreme Wellenbedingung während der Bemessungslebensdauer n auftritt.
Figure 4 - Relationship between deign working life, return period and probability off wave heights exceeding the normal average	Abbildung 4 – Verhältnis zwischen Bemessungslebensdauer, Wiederkehrintervall und Wahrscheinlichkeit von Wellenhöhen über normalem Durchschnitt