IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie	
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06	
TES-Code: TES-WHV-VGN-FSRU		Seite 1 von 169	

FSRU Wilhelmshaven: Vertäustudie

Siebte Ausgabe	06	28.08.2023	S. Sanz Sáenz	A Bakhtiari	J. de Groot	ISO-certified translation
Sechste Ausgabe	05	19.06.2023	S. Sanz Sáenz	J. de Groot	J. de Groot	
Fünfte Ausgabe	04	17.03.2023	S. Sanz Sáenz	J. de Groot	J. de Groot	
Vierte Ausgabe	03	23.02.2023	S. Sanz Sáenz	J. de Groot	J. de Groot	
Dritte Ausgabe	02	13.01.2023	S. Sanz Sáenz	L. Schweter (Aktis Hydraulics)	J. de Groot	
Zweite Ausgabe	01	09.12.2022	S. Sanz Sáenz	J. de Groot	J. de Groot	
Erste Ausgabe	00	15.11.2022	S. Sanz Sáenz	J. de Groot	J. de Groot	
Status	Ausgabe	Datum	Erstellt von	Geprüft von	Genehmigt von	Anmerkung

IMDC DOCINSPEC: I/RA/14330/22165

Umgebung

TES-Proj.- Nr.: TES-WHV-VGN

TES-Code: TES-WHV-VGN-FSRU

FSRU Wilhelmshaven: Vertäustudie

Dok.- Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06

Seite 2 von 169

Inhaltsverzeichnis

1	Einleitung	5
1.1	Hintergrund	5
1.2	Überblick für Leser	7
1.3	Konventionen und Definitionen	8
1.4	Gesetze, Normen und Referenzen mit Bezug auf die Bemessung	8
1.5	Abkürzungen	9
2	Ziele und Ansatz	12
2.1	Ziele	12
2.2	Ansatz	12
3	Eingabedaten und Bewertungskriterien	16
3.1	Metoceane Bedingungen	16
3.1.1	Wasserstand und Wassertiefe	16
3.1.2	Wind und Wellen	16
3.1.3	Strömung	21
3.2	Schiffsdaten	21
3.2.1	FSRU Excelsior	21
3.2.2	Anlegende LNG-Tanker	22
3.3	Daten zur Anlegestelle und dortigen Kielfreiheit	25
3.4	Vertäuungssystem	26
3.4.1	Dalben, Fender und Quick Release Hooks (QRH)	26
3.4.2	Vertäuungsleinen	30
3.4.3	Vertäuanordnungen	31
3.5	Bewertungskriterien	36
4	FSRU-Vertäuanalyse	38
4.1	Einleitung	38
4.2	Vorläufige Schätzung der maximalen Hochdruck-Bewegungen der FSRU	38
4.3	Verbesserte Vertäuanordnung	38
4.4	Grenzbedingungen für das sichere Verbleiben an der Anlegestelle	40
4.5	Wahrscheinlichkeit einer Überschreitung der Umgebungsgrenzbedingungen	41

Umgebung

TES-Proj.- Nr.: TES-WHV-VGN

TES-Code: TES-WHV-VGN-FSRU

FSRU Wilhelmshaven: Vertäustudie

Dok.- Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06

Seite 3 von 169

4.6	Schlussfolgerungen	43
5	Schiff-zu-Schiff-Vertäuanalyse	44
5.1	Einleitung	44
5.2	Verbesserte Vertäuanordnung	44
5.3	Grenzbedingungen für das sichere Verbleiben an der Anlegestelle	46
5.4	Wahrscheinlichkeit einer Überschreitung der Umgebungsgrenzbedingungen	48
5.5	Schlussfolgerungen	51
6	Auswahl der QRHs und der Fender	53
6.1	Gesetze und Normen	53
6.2	Spezifikation der QRH-Einheit	53
6.2.1	Auslegungslebensdauer und Strapazierfähigkeit	53
6.2.2	Anordnung der Anlegestelle	53
6.2.3	Quick Release Hook-Anordnungen	54
6.2.4	Entriegelungssysteme	55
6.2.5	Verholwinde	56
6.2.6	Lastüberwachungssystem für die Vertäuleine	57
6.3	Fenderspezifikationen	57
6.3.1	Auslegungslebensdauer und Strapazierfähigkeit	57
6.3.2	Anordnung der Anlegestelle, Schiffsdaten und Fenderungsbedarf	57
6.3.3	Fenderverkleidung	60
6.3.4	Anlegeenergie und Fenderauswahl	60
7	Bemessungslasten bei vertäuten Schiffen	61
7.1 La	asten an den Vertäudalben	63
7.2 La	asten an den Anlegedalben	64
8	Schlussfolgerungen und Empfehlungen	67
8.1	Schlussfolgerungen	67
8.2	Empfehlungen	72
Anha	ng A Beschreibung von <i>Aktis DMA</i>	73
Anha	ing B Wind und Wellen	75

Umgebung

TES-Proj.- Nr.: TES-WHV-VGN

FSRU Wilhelmshaven: Vertäustudie

Dok.- Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06

TES-Code: TES-WHV-VGN-FSRU Seite 4 von 169

Anhang C Sensitivitätsanalyse	79
Anhang D Ergebnisse für die FSRU	90
FSRU in Ballast bei Wasserstand SKN	91
FSRU in Ballast bei hundertjährlichem Hochwasserstand	94
FSRU beladen bei Wasserstand SKN	97
FSRU beladen bei hundertjährlichem Hochwasserstand	100
Anhang E Ergebnisse für den Schiff-zu-Schiff-Betrieb	103
FSRU in Ballast und LNG-Tanker mit Membrantank 138 Tsd. beladen bei Wassersta	nd SKN 104
FSRU beladen und LNG-Tanker mit Membrantank 138 Tsd. in Ballast bei Wassersta	nd SKN 108
FSRU in Ballast und LNG-Tanker mit Membrantank 138 Tsd. beladen bei Hochwasserstand	-
FSRU beladen und LNG-Tanker mit Membrantank 138 Tsd. in Ballast bei Hochwasserstand	-
FSRU in Ballast und LNG-Tanker mit Membrantank 170 Tsd. beladen bei Wassersta	nd SKN 121
FSRU beladen und LNG-Tanker mit Membrantank 170 Tsd. in Ballast bei Wassersta	nd SKN 125
FSRU in Ballast und LNG-Tanker mit Membrantank 170 Tsd. beladen bei Hochwasserstand	
FSRU beladen und LNG-Tanker mit Membrantank 170 Tsd. in Ballast bei Hochwasserstand	•
FSRU in Ballast und LNG-Tanker mit Kugeltank (Moss) 177 Tsd. beladen bei Wassel	rstand SKN137
FSRU beladen und LNG-Tanker mit Kugeltank (Moss) 177 Tsd. in Ballast bei Wasse	rstand SKN142
FSRU in Ballast und LNG-Tanker mit Kugeltank (Moss) 177 Tsd. beladen bei Hochwasserstand	•
FSRU beladen und LNG-Tanker mit Kugeltank (Moss) 177 Tsd. in Ballast bei Hochwasserstand	•
Anhang F Berechnungen der Anlegeenergie	155
Anhang G Dispositionszeichnung und vertäuanordnungen	

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Umgebung	OTES engie	
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06	
TES-Code: TES-WHV-VGN-FSRU		Seite 5 von 169	

1 Einleitung

1.1 Hintergrund

Das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) ist im September 2022 an die Tree Energy Solutions GmbH (TES) herangetreten und hat die gemeinsame Realisierung eines schwimmenden Flüssigerdgas (Liquefied Natural Gas – LNG)-Importterminals (Floating Storage and Regasification Unit – FSRU) angefragt. Das BMWK hat dazu im Februar 2023 die FSRU "Excelsior" für maximal 60 Monate gechartert. Das Projekt soll in Kooperation mit E.ON und ENGIE realisiert werden. Als Vorhabenträgerin wurde die "FSRU Wilhelmshaven GmbH" gegründet.

Der KUNDE hat einen Vertrag mit IMDC geschlossen. Dieser sieht technische Unterstützung durch IMDC für die Meeresarbeiten sowie für Modellierungsstudien vor, die in den Genehmigungsantrag einfließen werden.

Der vorliegende Entwurf umfasst ein inselartiges Anlandeterminal zur Abfertigung der FSRU Excelsior mit einer Kapazität von 138.000 m³, wie in Abbildung 1-1 und Abbildung 1-2 unten zu sehen ist.

Die FSRU wird über einen Zeitraum von mehreren Jahren vertäut liegen und Flüssigerdgas (LNG) über einen längsseits vertäuten LNG-Tanker (LNGC) aufnehmen. Der LNG-Tanker wird wöchentlich anlaufen. Seine Ladung wird innerhalb von ca. zwei Tagen gelöscht.

Das Vertäusystem muss so bemessen sein, dass es sowohl den FSRU- als auch den Schiff-zu-Schiff-Betrieb unterstützen kann. In Zukunft wird die Anlegestelle zur Abfertigung von LNG-Tankern mit einem Fassungsvermögen von 180.000 m³ dienen.

Die vorläufige Vertäuanordnung muss bewertet und verbessert werden, damit sie die Anforderungen an die (langfristige) Vertäuung der FSRU erfüllt, d. h. ermöglicht, dass diese auch bei Extremwetterereignissen sicher am Terminal vertäut bleibt. Darüber hinaus ist eine Betriebsfähigkeitsstudie der FSRU und des Seite an Seite mit dieser vertäuten LNG-Tankers erforderlich. Diese Aspekte werden mithilfe einer dynamischen Vertäuanalyse (Dynamic Mooring Analysis; DMA) bewertet. Gestützt auf die Ergebnisse werden die Grenzbedingungen festgelegt und es wird die Vertäuanordnung verbessert.

In diesem Bericht werden die Methodik, die Annahmen, die Ergebnisse, die Schlussfolgerungen und die Empfehlungen aus der Studie im Rahmen der dynamischen Vertäuanalyse sowie die Ergebnisse der Berechnungen der Anlegeenergie dargelegt.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie	
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06	
TES-Code: TES-WHV-VGN-FSRU		Seite 6 von 169	

Abbildung 1-1 Standort des FSRU-Terminals Wilhelmshaven

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 7 von 169

Abbildung 1-2 Detailansicht des FSRU-Terminals Wilhelmshaven

1.2 Überblick für Leser

Kapitel 2 beschreibt die Ziele der DMA sowie die zugrunde liegende Methodik und die verwendete Software.

Kapitel 3 erläutert die Anordnung des Liegeplatzes, die Merkmale der Bemessungsschiffe, die Spezifikationen des Vertäuungssystems, die Umgebungsverhältnisse und die Bewertungskriterien.

Kapitel 4 und 5 beschreiben das Simulationsprogramm und die Ergebnisse der DMA, die für die FSRU allein bzw. für den Schiff-zu-Schiff-Betrieb durchgeführt wurden.

Kapitel 6 enthält eine Beschreibung der erforderlichen Fender und Schnellverschlusshaken.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie	
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06	
TES-Code: TES-WHV-VGN-FSRU		Seite 8 von 169	

Kapitel 7 nennt schließlich die Schlussfolgerungen und Empfehlungen.

1.3 Konventionen und Definitionen

Sofern nichts anderes angegeben ist, werden folgende Konventionen verwendet:

Einheiten

Die Einheiten aller Parameter und Variablen werden gemäß Internationalem Einheitensystem (SI) angegeben.

Datum

Alle Tiefenangaben in diesem Bericht beziehen sich auf SKN.

Richtungen

Sofern nichts anderes angegeben ist, werden Wind-, Wellen- und Strömungsrichtungen gemäß der nautischen Konvention angegeben. Bei Winden und Wellen beziehen sie sich auf die Richtung (Grad), aus der sie kommen, gemessen im Uhrzeigersinn bei Norden beginnend. Bei Strömungen beziehen sie sich auf die Richtung (Grad), in die die Strömung fließt, gemessen im Uhrzeigersinn bei Norden beginnend.

Die Vorzeichenkonvention der Schiffsbewegungen ist in Abbildung 1-3 dargelegt.

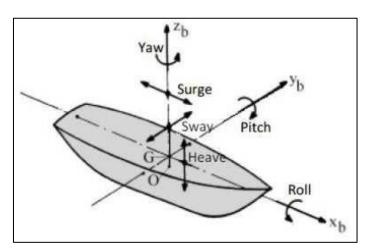


Abbildung 1-3 Vorzeichenkonvention der Schiffsbewegungen

1.4 Gesetze, Normen und Referenzen mit Bezug auf die Bemessung

Folgende Referenzdokumente wurden für diese Studie unterstützend herangezogen:

Gesetze, Normen und Leitlinien mit Bezug auf die Bemessung

[1] DNV GL, 2019. Guidance for long-term nearshore mooring systems, DNVGL-OTG-18, Januar 2019.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie	
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06	
TES-Code: TES-WHV-VGN-FSRU		Seite 9 von 169	

- [2] DNV, 2014. Environmental Conditions and Environmental Loads, DNV-RP-205, 2014.
- [3] OCIMF, 2018. Mooring Equipment Guidelines. 4. Ausgabe 2018.
- [4] BS 6349-4:2014. Maritime works Teil 4: Code of practice for design of fendering and mooring systems.
- [5] American Petroleum Institute, 1993. RP 2A-LRFD, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms Load and Resistance Factor Design.
- [6] PIANC, 1995. Criteria for Moored Ships in Harbours, Bericht der Arbeitsgruppe Nr. 24, Beilage zum Bulletin Nr. 88 1995.
- [7] API, 2008; Design Analysis of Stationkeeping Systems for Floating Structures, recommended practice 2SK, 3. Ausgabe 2005 mit Nachtrag 2008

Referenzdokumente und -zeichnungen

FSRU-Informationen:

- [8] DSME 2208: Übersichtsplan Excelsior, DA101Z029, rev0.
- [9] Excelerate 2022: Technische Informationen Excelsior 138.000 m³ FSRU
- [10] OCIMF, 2005. Revised Ship Inspection Report (SIRE) Programme. IMO\LR 9239616
- [11] XLCR Gas Form C 2021: Yard n°2208 EXCELSIOR (Revision 5)
- [12] IMDC (2023). Erläuterungsbericht. TES-WHV-VGN-FSRU-ST-DOC -2001.07
- [13] Trelleborg Marine Systems, 2018. Fender systems.
- [14] Trelleborg Marine Systems, 2011. Pneumatic Rubber Fenders
- [15] Bexco, 2022. Bexcoflex 8-Strand information brochure.
- [16] Lankhorst, 2018. Informationsbroschüre Stahldraht 6 x 36 WS + IWRC.

Metoceane Daten:

- [17] IMDC (2023). Bericht über die Umgebungsverhältnisse. TES-WHV-VGN-FSRU-ENV-DOC-2014.07
- [18] Aktis DMA User Reference Manual V2022

1.5 Abkürzungen und Definierte Begriffe

Tabelle 1-1 enthält die in diesem Bericht verwendeten Abkürzungen.

Tabelle 1-1 Abkürzungsverzeichnis

Abkürzung	Einheit	Beschreibung	
Ah	Grad	Horizontalwinkel der Vertäuungsleine	
ALS		Accidental Limit State (außergewöhnlicher Grenzzustand)	
API		American Petroleum Institute	
Av	Grad	Vertikalwinkel der Vertäuungsleine	
Awx	m ²	Seitenwindbereich des Schiffs	

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie	
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06	
TES-Code: TES-WHV-VGN-FSRU		Seite 10 von 169	

Awy m² B m CoG m D m DMA m FLS m FSRU m GMT m M m M m M m M m M m M m M m LNGC m Lüa m Lob m	Frontalwindbereich des Schiffs Breite des Schiffs Center of Gravity (Schwerpunkt) Tiefe über dem Hauptdeck des Schiffs Dynamic Mooring Analysis (dynamische Vertäuanalyse)
CoG D m DMA m FLS FSRU GM _T m GM _L m Hs m h m k _{xx} m k _{yy} m k _{zz} m LNGC m Lüa m	Center of Gravity (Schwerpunkt) Tiefe über dem Hauptdeck des Schiffs
D m DMA FLS FSRU GM _T GM _L m Hs m h m k _{xx} m k _{yy} m k _{zz} m LNGC Lo Lüa m	Tiefe über dem Hauptdeck des Schiffs
DMA FLS FSRU GM _T m GM _L m Hs m h m k _{xx} m k _{yy} m k _{zz} m LNGC Lo Lüa m	·
FLS FSRU GM _T m GM _L m Hs m h m k _{xx} m k _{yy} m k _{zz} m LNGC m Lüa m	Dynamic Mooring Analysis (dynamische Vertäuanalyse)
FSRU GM _T m GM _L m Hs m h m k _{xx} m k _{yy} m k _{zz} m LNGC m Lüa m	
GM _T m GM _L m Hs m h m k _{xx} m k _{yy} m k _{zz} m LNGC m Lüa m	Fatigue limit state (Grenzzustand der Ermüdung, GZE)
GML m Hs m h m k _{xx} m k _{yy} m k _{zz} m LNGC m Lüa m	Schwimmende Speicher- und Regasifizierungseinheit
Hs m h m k _{xx} m k _{yy} m k _{zz} m LNGC Lo Lo m Lüa m	Transversale metazentrische Höhe
$\begin{array}{cccc} h & & m \\ k_{xx} & & m \\ k_{yy} & & m \\ k_{zz} & & m \\ LNGC & & \\ Lo & & m \\ L\"ua & & m \\ \end{array}$	Longitudinale metazentrische Höhe
$\begin{array}{ccc} k_{xx} & m \\ k_{yy} & m \\ k_{zz} & m \\ LNGC & \\ Lo & m \\ L\"ua & m \\ \end{array}$	Signifikante Wellenhöhe
k _{yy} m k _{zz} m LNGC Lo m Lüa m	Wassertiefe
k _{zz} m LNGC Lo m Lüa m	Trägheitsradius Rollen in der Luft
LNGC Lo m Lüa m	Trägheitsradius Stampfen in der Luft
Lo m Lüa m	Trägheitsradius Gieren in der Luft
Lüa m	LNG-Tanker
	Länge der Vertäuungsleine von Klüse bis Poller
Lob m	Länge über alles
	Länge der Vertäuungsleine an Bord
Lpp m	Länge zwischen den Loten
Ltot m	Gesamtlänge der Vertäuungsleine
MBL kN	Mindestbruchlast
NHN	Normalhöhennull
OCIMF	Oil Companies International Marine Forum
pt kN	Vorspannung der Vertäuungsleine
QRH	Quick Release Hook (Schnellverschlusshaken)
SI	Einheiten nach dem Internationalen Einheitensystem (SI)
SKN	Seekartennull
SWL kN	Safe Working Load (Traglast)
T m	Tiefgang des Schiffs, entsprechend Verwendung in der Studie
Tdes m	Bemessungstiefgang des Schiffs

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 11 von 169

Tp	s	Peak-Wellenperiode			
u _c	m/s	Strömungsgeschwindigkeit			
U _{dir}	Grad	Mittlere Windrichtung			
u ₃₆₀₀	m/s	Stundenmittel der Windgeschwindigkeit			
u ₃₀	m/s	30-Sekunden-Mittel der Windgeschwindigkeit			
u	m/s	Windgeschwindigkeit			
ULS		Ultimate Limit State (Grenzzustand der Tragfähigkeit)			
WLL	kN	Working Load Limit (Tragfähigkeit)			
Δ	t	Wasserverdrängung des Schiffs			

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 12 von 169

2 Ziele und Ansatz

2.1 Ziele

Ziel der Studie ist die Verbesserung der ursprünglich vorgeschlagenen Vertäuanordnung durch Bestimmung der geplanten Lasten des Bemessungsvertäusystems und Auswertung der Bewegungen des Schiffs bzw. der Schiffe mittels einer dynamischen Vertäuanalyse für verschiedene Vertäuanordnungen sowie unter unterschiedlichen Umgebungsverhältnissen. Es müssen zwei Anordnungen ausgewertet werden: 1) Nur FSRU 2) FSRU Seite an Seite mit LNG-Tanker.

Es werden folgende Teilziele formuliert:

Für die FSRU:

- Verbesserung der Vertäuanordnung zur Ermöglichung der sicheren Vertäuung auch unter Extrembedingungen, vorzugsweise einem hundertjährlichen Extremereignis.
- Bestimmung der Umgebungsgrenzbedingungen für das sichere Verbleiben der FSRU an der Anlegestelle.
- Bestimmung der Wahrscheinlichkeit der Überschreitung der Umgebungsgrenzbedingungen sowie der erwarteten Häufigkeit von Situationen, in denen die FSRU den Liegeplatz aufgrund des erwarteten Risikos einer Überschreitung der Bewegungen und/oder Lasten in den Vertäuungsleinen verlassen muss.

Für die FSRU mit LNG-Tanker längsseitig:

- Bestimmung der Umgebungsgrenzbedingungen für den Schiff-zu-Schiff-Betrieb;
- Bestimmung der Umgebungsgrenzbedingungen für das sichere Verbleiben an der Anlegestelle.
- Ableitung der Wahrscheinlichkeit einer Überschreitung der Umgebungsgrenzbedingungen.

2.2 Ansatz

Mithilfe der Software *Aktis DMA* (vgl. Anhang A) wurde eine dynamische Vertäuanalyse (Dynamic Mooring Analysis; DMA) durchgeführt, um die Bemessung des aktuellen Vertäuungssystems zu verbessern und die Grenzbedingungen für das FSRU-Terminal zu bestimmen. *Aktis DMA* ist ein Paket zur Simulation von Schiffsbewegungen innerhalb der sechs Freiheitsgrade (Six Degrees of Freedom, 6DOF), das im Zeitbereich uneingeschränkt arbeitet. Es berücksichtigt Wellenkräfte 1. und 2. Ordnung, Windkräfte, Strömungskräfte, die hydrodynamische Interaktion mit anderen Objekten und dem Meeresboden sowie alle nichtlinearen Arten von Vertäuungs- und Fendereigenschaften.

Für das sichere und effiziente Löschen bzw. Beladen der vertäuten FSRU – bei Vertäuung entweder allein oder Seite an Seite mit dem anlegenden LNG-Tanker – wurde eine Vielzahl von Umgebungsverhältnissen simuliert (Wind, Wellen, Wasserstand und Strömungen) und anhand von Leinenlast- und Bewegungskriterien bewertet, um davon ausgehend die Umgebungsgrenzbedingungen und die Wahrscheinlichkeit von deren Überschreitung abzuleiten. Werden die Bewegungskriterien überschritten, so führen diese Bedingungen zu Betriebsausfällen, und ihre kombinierte Überschreitenswahrscheinlichkeit bestimmt den Zeitraum, in dem der Lade-/Löschbetrieb ausgesetzt werden muss. Werden die Grenzen der Leinenlasten überschritten, so besteht das Risiko von Leinenbrüchen. Derartige Ereignisse müssen vermieden werden. Daher

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 13 von 169

sollten der LNG-Tanker und die FSRU den Liegeplatz verlassen, bevor entsprechende Bedingungen eintreten. In diesem Fall besteht Bedarf an einem metoceanen Vorhersagesystem.

In Abbildung 2-1 wird der Modellierungsansatz schematisch dargestellt. Zu den Eingabedaten gehören unter anderem die Eigenschaften des vertäuten Schiffs und des Liegeplatzes, die Vertäuanordnungen, die Umgebungsverhältnisse sowie die Schiffshydrodynamik und die Grenzkriterien. *Aktis DMA* liefert die Ansprech- und Vertäukräfte des Schiffs, aus denen sich die metoceanen Grenzbedingungen und Ausfallzeiten ableiten lassen.

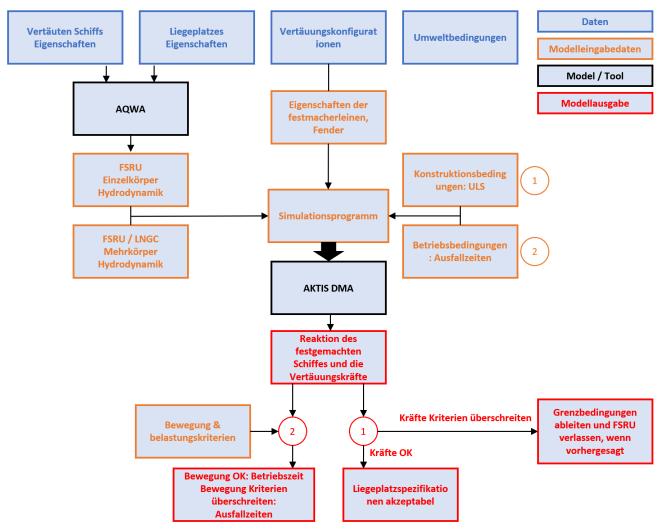


Abbildung 2-1 Studienansatz [18]

Die Modellierung der Schiffe umfasst die hydrodynamischen und hydrostatischen Reaktionseigenschaften des Schiffs (Stabilität, zusätzliche Masse und Dämpfung) sowie die Wellenkräfte 1. und 2. Ordnung, die Windkräfte und die Strömungskräfte, die am Schiff wirken. Die hydrodynamischen Reaktionseigenschaften des Schiffs und die Wellenkräfte werden mit der

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 14 von 169

branchenüblichen Software ANSYS AQWA mit einer 3D-Panel-Methode berechnet. Abbildung 2-2 zeigt ein Beispiel für die Panelisierung in AQWA.

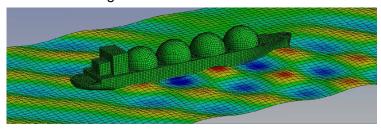
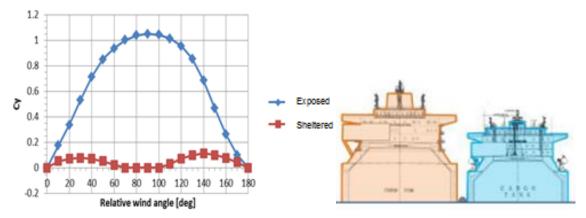



Abbildung 2-2 Panelisierung eines Schiffs in AQWA [18]

Die Schematisierung der FSRU erfolgt entweder als Einzelkörper oder im Kombination mit einem Seite an Seite mit dieser vertäuten LNG-Tanker zur Berücksichtigung von dessen Einfluss im Modell. Die hydro- und aerodynamischen Merkmale werden zusammen mit den Eigenschaften des Vertäuungssystems in *Aktis DMA* eingebracht.

Die externen Kräfte sind dynamisch (d. h. im Lauf der Zeit variabel nach Größe und Richtung). Die Wellenkräfte werden im Zeitbereich auf Basis des Wellenspektrums unter Verwendung der Beugungsergebnisse aus den AQWA-Berechnungen ermittelt. Die Windkräfte werden dynamisch auf Basis eines API-Spektrums herangezogen, sowie unter Heranziehung der Windkraftkoeffizienten aus Windkanaltests, die durch das OCIMF veröffentlicht wurden [3]. Die Rumpfwiderstandsbeiwerte werden entsprechend der Definition des OCIMF in [5] verwendet.

Bei den Fällen mit mehreren Körpern (multi-body case) werden die hydrodynamischen Wechselwirkungen und die Wellenabschirmung mit AQWA hergeleitet. Die Wirkung des Windschutzes auf dem geschützten Tanker wird durch die Heranziehung von Abschirmkoeffizienten einbezogen. Der Abschirmkoeffizient ist abhängig von der Größe des Spalts zwischen den Schiffen sowie von der Projektion des richtungsabhängigen geschützten Bereichs. Die Wirkung eines Abschirmkoeffizienten und relativer Windangriffsflächen wird in Abbildung 2-3 veranschaulicht.

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 15 von 169

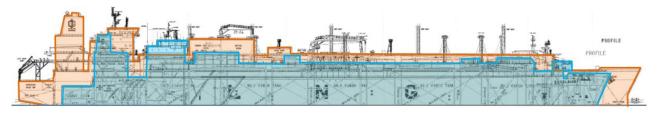


Abbildung 2-3 Beispiel einer Seiten- und Queransicht der FSRU (blau) und eines LNG-Tankers (rot) im Schiff-zu-Schiff-Betrieb und Einfluss auf den Windlastkoeffizienten Cy [18]

Elastische Vertäuungsleinen werden je nach ihrem Typ und ihren Eigenschaften als nichtlineare elastische Leinen modelliert. Bei zusammengesetzten Leinen (Hauptleine und Recker) werden die Merkmale in Kombination verwendet.

Bei der DMA werden volldynamische Simulationen durchgeführt, die für die Bemessungs- und Betriebsbedingungen eine Sturmdauer von drei Stunden darstellen. Dabei werden Zeitreihen von Schiffsbewegungen, Vertäulasten, Fender-Durchbiegungen und Leinendehnungen aufgezeichnet. Für jede Bedingung werden mehrere Realisierungen durchgeführt, und die Bewegungen und Belastungen werden spektral und statistisch analysiert. Mittels der Mean-of-Maxima-Methode [7] wird die erwartete maximale Ansprechkraft hergeleitet und den Grenzwerten für die gewählten Kriterien gegenübergestellt (vgl. Kapitel 4.3). Anschließend werden die Umgebungsverhältnisse, bei denen das wahrscheinlichste Maximum der Ansprech- oder Vertäulasten eines der Bewertungskriterien erreicht, als Grenzbedingung eingetragen.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 16 von 169

3 Eingabedaten und Bewertungskriterien

3.1 Metoceane Bedingungen

Die metoceanen Bedingungen am Projektstandort, einschließlich der Extremwertanalyse, sind in [17] beschrieben. Die nachstehenden Abschnitte enthalten eine kurze Zusammenfassung.

3.1.1 Wasserstand und Wassertiefe

Die Wasserstände, die für die FSRU-Simulationen herangezogen wurden, sind das Seekartennull (SKN), das dem örtlich niedrigsten Gezeitenwasserstand (NGzW) entspricht, und das hundertjährliche Hochwasser (konservative Abschätzung) bei +7,16 m SKN. Die Wasserstände, die für die Schiff-zu-Schiff-Simulationen herangezogen wurden, sind das Seekartennull (SKN), und das fünfjährliche Hochwasser bei +6,17 m SKN.

Der hundertjährliche extreme Niedrigwasserstand liegt bei -3,52 m NHN (-1,03 m SKN). Die Liegeplatztiefe beträgt -14,0 m SKN. Das Modell wurde für -15,6 m SKN erstellt, was die Dämpfung verringern wird, da der Wind nach den Sensitivitätssimulationen die dominierende Kraft ist. Die resultierende Wassertiefe beträgt dann für die FSRU-Simulationen bei hundertjährlichem Hochwasser 22,74 m und für den Schiff-zu-Schiff-Betrieb bei fünfjährlichem Hochwasser 21,75 m. Die Wasserstände werden in den Simulationen konstant gehalten.

3.1.2 Wind und Wellen

Die vorherrschenden Windrichtungen sind WSW bis N. Die extremen (hundertjährlichen) mittleren stündlichen Windgeschwindigkeiten schwanken je nach Richtung zwischen 16 und 28 m/s. Die Windsee kommt aus einem breiteren Sektor, überwiegend jedoch aus WNW bis N, wohingegen die Dünungskomponenten nur aus einem sehr schmalen N-Sektor stammen. Es wird angemerkt, dass Dünungswellen aufgrund des natürlichen Schutzes kaum in die Mündung eindringen und den Projektstandort erreichen. Dementsprechend wird für die DMA-Simulationen nur ein repräsentatives Dünungsszenario ausgewählt. Die Höhen der extremen (hundertjährlichen) Windwellen schwanken zwischen Hm0=1,0 m (Tp=3,0 s) und 2,1 m (Tp=5,2 s). Die Höhen der extremen (hundertjährlichen) Dünungswellen schwanken zwischen Hm0=0,1 m (Tp=13,5 s) und 0,4 m (Tp=6,7 s). Die vollständige Reihe der hundertjährlichen Wind- und Windsee-Bemessungsbedingungen wird in Tabelle 3-1 gezeigt, und für die Dünung in Tabelle 3-2. Alle zusätzlich untersuchten Wiederkehrintervalle sind in Anhang B Wind und Wellen dargestellt.

Die Winddatenanalyse vom Leuchtturm Alte Weser wurde ausgehend von den Modelldaten auf den Projektstandort übertragen, vgl. Abbildung 3-1.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 17 von 169

Tabelle 3-1 Hundertjährliche extreme Wind- und Windseebedingungen

Wind		Windwellen					
Richtung aus (°N)	Geschwindigkeit (m/s)	Mdir aus (°N)	Hm0 (m)	Tp (s)	Gamma (JONSWAP)	Richtungs ausbreitung (s)	Richtungs ausbreitung (°)
0	27,2	347,2	2,1	5,1	2,3	9,6	24,7
30	22,6	9,4	1,6	4,4	2,8	5,4	32,4
60	18,0	51,1	1,2	3,8	3,3	5,5	32,1
90	21,0	94,2	1,3	3,8	3,4	5,7	31,6
120	17,9	122,8	1,1	3,7	3,5	7,5	27,7
150	16,8	138,8	1,0	3,7	2,4	10,3	24,0
180	21,6	150,7	1,3	4,1	1,7	7,9	27,0
210	24,2	171,0	1,2	3,8	1,5	4,5	35,0
240	26,4	239,5	1,0	3,0	2,9	1,9	46,5
270	26,0	314,3	1,3	4,3	1,5	4,9	33,8
300	26,8	333,5	1,8	4,9	1,9	11,5	22,8
330	27,8	339,0	2,1	5,2	2,0	13,7	21,1

Tabelle 3-2 Hundertjährliche extreme Dünungsbedingungen

Dünungswellen						
Sektor	Mdir aus (°N)	Hm0 (m)	Tp (s)	Gamma (JONSWAP)	Richtungsausbreitung (s)	Richtungsausbreitung (°)
West	345	0,1	13,5	1,8	34,0	13,5
WNW	348	0,1	14,7	1,8	29,9	14,5
NNW	356	0,2	15,4	1,8	19,2	18,1
Nord	358	0,4	8,7	1,1	12,6	21,9
NNO	0	0,4	6,7	1,7	9,4	25,0

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 18 von 169

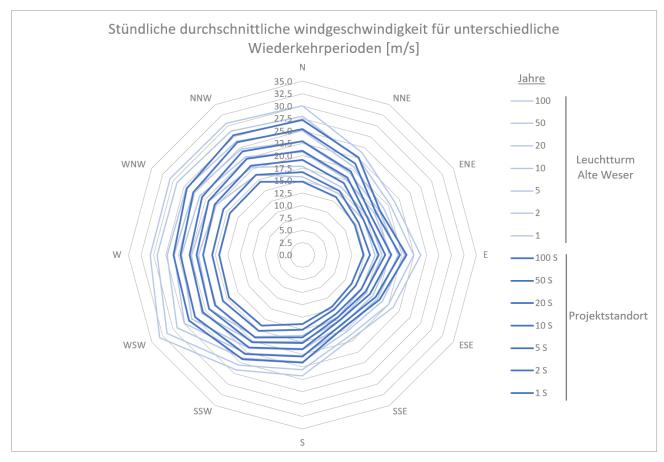


Abbildung 3-1 Extremwindanalyse am Leuchtturm Alte Weser, und übertragen auf den Projektstandort

Die Eintritts- und Überschreitungshäufigkeiten der Windgeschwindigkeit und -richtung sind in Abbildung 3-2 und Abbildung 3-3 aufgeführt.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 19 von 169

			N	NNE	ENE	E	ESE	SSE	S	SSW	WSW	w	WNW	NNW		Überschreitung
	0	1	0.12%	0.15%	0.15%	0.18%	0.22%	0.22%	0.21%	0.25%	0.28%	0.21%	0.14%	0.12%	2.26%	ı
	1	2	0.22%	0.27%	0.29%	0.31%	0.42%	0.54%	0.42%	0.48%	0.63%	0.57%	0.26%	0.18%	4.58%	97.74%
	2	3	0.44%	0.53%	0.43%	0.51%	0.63%	0.80%	0.67%	0.90%	1.13%	1.00%	0.39%	0.26%	7.71%	93.16%
	3	4	0.71%	0.76%	0.54%	0.69%	0.85%	1.04%	0.94%	1.29%	1.69%	1.21%	0.51%	0.41%	10.67%	85.46%
	4	5	0.87%	0.80%	0.63%	0.83%	1.02%	1.12%	1.16%	1.72%	2.19%	1.24%	0.65%	0.57%	12.81%	74.79%
	5	6	0.96%	0.69%	0.63%	0.90%	0.98%	0.98%	1.14%	2.00%	2.35%	1.05%	0.77%	0.73%	13.19%	61.98%
	6	7	0.72%	0.58%	0.66%	0.91%	0.99%	0.89%	0.92%	1.98%	2.04%	0.88%	0.86%	0.98%	12.41%	48.79%
	7	8	0.57%	0.40%	0.54%	0.86%	0.86%	0.74%	0.77%	1.63%	1.57%	0.80%	0.86%	0.99%	10.60%	36.38%
	8	9	0.45%	0.31%	0.45%	0.75%	0.65%	0.43%	0.52%	1.23%	1.12%	0.64%	0.88%	0.77%	8.20%	25.78%
	9	10	0.28%	0.20%	0.35%	0.53%	0.41%	0.29%	0.33%	0.87%	0.76%	0.55%	0.71%	0.63%	5.92%	17.58%
_	10	11	0.22%	0.17%	0.28%	0.40%	0.25%	0.16%	0.19%	0.51%	0.58%	0.40%	0.55%	0.49%	4.20%	11.67%
Windgeschwindigkeit [m/S]	11	12	0.14%	0.14%	0.17%	0.21%	0.16%	0.07%	0.10%	0.28%	0.40%	0.31%	0.42%	0.34%	2.74%	7.47%
Ę	12	13	0.09%	0.09%	0.08%	0.10%	0.09%	0.05%	0.05%	0.20%	0.27%	0.24%	0.28%	0.27%	1.80%	4.74%
gke	13	14	0.07%	0.06%	0.04%	0.04%	0.03%	0.01%	0.02%	0.11%	0.22%	0.19%	0.21%	0.18%	1.18%	2.94%
ndi	14	15	0.04%	0.03%	0.01%	0.02%	0.00%	0.00%	0.01%	0.06%	0.13%	0.15%	0.15%	0.12%	0.73%	1.76%
Ĭ	15	16	0.03%	0.01%	0.00%	0.01%		0.00%	0.01%	0.02%	0.08%	0.11%	0.09%	0.08%	0.46%	1.02%
escl	_		0.01%		0.00%	0.01%		0.00%	0.01%	0.02%	0.04%	0.08%	0.05%	0.05%	0.27%	0.57%
gpu	17	18	0.01%	0.00%		0.01%			0.00%	0.01%	0.02%	0.04%	0.03%	0.03%	0.14%	0.30%
Ν			0.00%			0.00%			0.00%	0.01%	0.01%	0.02%		0.01%	0.07%	0.16%
	_	_	0.00%	0.00%					0.00%	0.00%	0.01%	0.01%		0.01%	0.04%	
			0.00%							0.00%	0.00%	0.00%		0.01%	0.02%	
			0.00%							0.00%	0.00%	0.00%		0.00%	0.01%	
			0.00%									0.00%		0.00%	0.01%	
		24	0.00%								0.00%	0.00%		0.00%	0.00%	
		25	0.00%										0.00%	0.00%	0.00%	
		26	0.00%											0.00%	0.00%	0.00%
		27	0.00%											0.00%	0.00%	0.00%
		28	0.00%											0.00%	0.00%	
	28	_	0.00%											0.00%	0.00%	
<u> </u>	29	30	0.00%	0.00%	0.00%										0.00%	
			5.95%	5.20%	5.26%	7.28%	7.56%	7.36%	7.47%	13.56%	15.53%	9.73%	7.86%	7.24%	100%	

Abbildung 3-2 Eintrittshäufigkeit der Windgeschwindigkeit und -richtung am Projektstandort

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie			
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06			
TES-Code: TES-WHV-VGN-FSRU		Seite 20 von 169			

	ĺ								1	1		1		l
		N	NNE	ENE	E	ESE	SSE	S	SSW	wsw	W	WNW		Alle Richtungen
										15.53%				
	1	5.83%	5.05%	5.11%	7.10%	7.34%	7.14%	7.26%	13.31%	15.25%	9.51%	7.71%	7.12%	97.74%
	2	5.61%	4.78%	4.82%	6.80%	6.92%	6.60%	6.84%	12.83%	14.62%	8.95%	7.45%	6.95%	93.16%
										13.49%				
	4	4.45%	3.49%	3.84%	5.59%	5.44%	4.76%	5.23%		11.80%	6.73%	6.55%	6.27%	74.79%
	_		2.68%						8.93%	9.61%	5.49%	5.89%	5.70%	61.98%
	6	2.62%	2.00%	2.58%	3.86%	3.44%	2.65%	2.93%	6.92%	7.26%	4.44%	5.12%	4.97%	48.79%
	7	1.90%	1.41%	1.92%	2.95%	2.45%	1.77%	2.01%	4.94%	5.22%	3.56%	4.26%	3.99%	36.38%
	8	1.33%	1.02%	1.38%	2.08%	1.59%	1.02%	1.24%	3.32%	3.65%	2.75%	3.40%	2.99%	25.78%
	9	0.88%	0.71%	0.93%	1.33%	0.94%	0.59%	0.73%	2.09%	2.54%	2.12%	2.52%	2.22%	17.58%
2	10	0.60%	0.51%	0.58%	0.81%	0.53%	0.30%	0.39%	1.22%	1.77%	1.57%	1.81%	1.59%	11.67%
Ę,	11	0.38%	0.34%	0.30%	0.41%	0.28%	0.13%	0.20%	0.71%	1.19%	1.17%	1.27%	1.10%	7.47%
Windgeschwindigkeit [m/S]	12	0.24%	0.21%	0.13%	0.19%	0.12%	0.07%	0.10%	0.43%	0.79%	0.86%	0.84%	0.76%	4.74%
gke	13	0.15%	0.11%	0.05%	0.09%	0.03%	0.02%	0.05%	0.23%	0.52%	0.62%	0.56%	0.50%	2.94%
ndi	14	0.08%	0.05%	0.02%	0.05%	0.00%	0.01%	0.03%	0.12%	0.30%	0.43%	0.35%	0.31%	1.76%
Ĭ.	_		0.02%				0.00%	0.02%	0.06%	0.17%	0.28%	0.21%	0.19%	1.02%
escl	16	0.02%	0.01%	0.00%	0.02%		0.00%	0.01%	0.04%	0.08%	0.17%	0.12%	0.11%	0.57%
gpu	17	0.01%	0.00%		0.01%			0.00%	0.02%	0.04%	0.08%	0.07%	0.06%	0.30%
N F	18	0.01%	0.00%		0.00%			0.00%	0.01%	0.02%	0.04%	0.04%	0.03%	0.16%
_	19	0.01%	0.00%					0.00%	0.00%	0.01%	0.02%	0.02%	0.02%	0.09%
	20	0.00%							0.00%	0.01%	0.01%	0.01%	0.01%	0.05%
	21	0.00%							0.00%	0.00%	0.01%	0.01%	0.01%	0.02%
	22	0.00%								0.00%	0.00%	0.01%	0.00%	0.01%
	23	0.00%								0.00%	0.00%	0.00%	0.00%	0.01%
	24	0.00%										0.00%	0.00%	0.00%
	25	0.00%											0.00%	0.00%
	26	0.00%											0.00%	0.00%
	27	0.00%												
	28	0.00%												
	29	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	

Abbildung 3-3 Überschreitungshäufigkeit der Windgeschwindigkeit und -richtung am Projektstandort

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 21 von 169

3.1.3 Strömung

Ausgehend von dem Bericht über die Umgebungsverhältnisse [17] wurde geschätzt, dass die vorherrschende Strömungsrichtung an den Anlegedalben bei Flut 141° N (Fließrichtung südwärts) und bei Ebbe 323° N (Fließrichtung nordwärts) beträgt. Die Strömungsgeschwindigkeit wurde ausgehend von dem in [17] angegebenen maximalen im Wendebecken ermittelten Strömungswert bestimmt, der bei 1,5 m/s liegt. Es wurde ein Sicherheitsfaktor von 25 % angewandt, wodurch sich sowohl für Flut als auch für Ebbe in Kombination mit den Extrembedingungen 1,88 m/s ergeben. Die Ausrichtung der FSRU liegt bei 321,75° N.

Die Strömungen werden in den Simulationen im Hinblick auf ihre Tiefe, Richtung und Größe als gleichmäßige Strömungen berücksichtigt.

Strömung

Richtung Geschwindigkeit (m/s)

323 1,88

141 1.88

Tabelle 3-3 Strömungsbedingungen

3.2 Schiffsdaten

3.2.1 FSRU Excelsion

Die Hauptabmessungen der FSRU sind in Tabelle3-4 angegeben. Das Schiff wird in der Analyse in Ballast und beladenem Zustand bewertet.

Tabelle3-4 Hauptmerkmale der FSRU in Ballast und beladenem Zustand [8], [9], [10], [11]

Parameter	Einheit		Excelsior			
Тур			FSRU			
Kapazität (100 %)	m ³		138.000			
Länge über alles	Lüa	m	277,0			
Länge zwischen den Loten	Lpp	m	266,0			
Breite (gemallt)	В	m	43,4			
Seitenhöhe bis Hauptdeck (gemallt)	D	m	26,0			
Ladezustand in der Studie			in Ballast	beladen (maximaler Tiefgang)		
In der Studie verwendeter Tiefgang	Т	m	9,18	12,32		
Verdrängung	Δ	t	78.165	108.832		
Transversale metazentrische Höhe (korr.)	GM⊤	m	11,7	2,46		
Longitudinale metazentrische Höhe (korr.)	GM∟	m	484,1	441,6		
Trägheitsradius Rollen in der Luft	k _{xx}	m	17,4	13,3		

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 22 von 169

Trägheitsradius Stampfen in der Luft	k _{yy}	m	68,8	61,5
Trägheitsradius Gieren in der Luft	k _{zz}	m	68,8	61,5
Windabweichung längsschiffs	Aw _x	m ²	1.466	1.329
Windabweichung querschiffs	Awy	m ²	7.286	6.446

Abbildung 3-4 zeigt die Dispositionszeichnung der FSRU, die unter anderem zur Bestimmung der Höhe der Windendecks, der Länge der Vertäuungsleinen zwischen Haltepfahl und Klüse, der Ausdehnung der flachen Seite des Rumpfes und der Windangriffsflächen verwendet wurde.

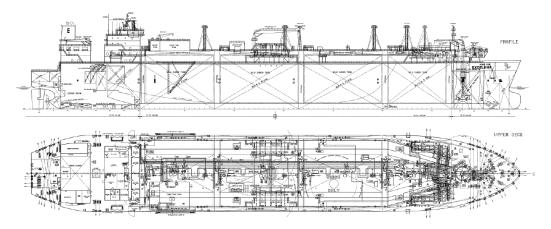


Abbildung 3-4 Dispositionszeichnung FSRU Excelsior [9], Anhang G Dispositionszeichnung und vertäuanordnungen

3.2.2 Anlegende LNG-Tanker

Die Hauptabmessungen der untersuchten anlegenden LNG-Tanker sind in Tabelle 3-5 angegeben. Die Schiffe werden in der Analyse in Ballast (an die beladene FSRU vertäut) und in beladenem Zustand (an die FSRU in Ballast vertäut) bewertet.

Tabelle 3-5 Hauptmerkmale des LNG-Tankers in Ballast und beladenem Zustand

Parameter	Einheit		LNG-Tanker m. Membrantank 170 Tsd.		Kugeltar	nker m. nk (Moss) Tsd.	LNG-Tanker m. Membrantank 138 Tsd.		
Тур			LN	IGC	LN	GC	LNGC		
Kapazität	m³		170	0.200	177	.200	138.000		
Länge über alles	Lüa	m	29	99,9	29	9,9	277		
Länge zwischen den Loten	Lpp	m	2	188	2	36	266		
Breite	В	m	4	5,8	48,9		43,4		
Seitenhöhe bis Hauptdeck	D	m	26		27		26		
Ladezustand in der Studie			in Ballast beladen		in Ballast	beladen	in Ballast	beladen	
Tiefgang für Studie	Т	m	9,4 11,6		9,5	11,5	9,6	12,32	

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 23 von 169

Verdrängung	Δ	t	95.150	120.520	92.507	115.752	82.257	108.832
Transversale metazentrische Höhe	GM⊤	m	7,9	3	11,61	2,88	11,7	2,46
Longitudinale metazentrische Höhe	GML	m	583	507,9	542,9	476,6	462,4	441,6
Trägheitsradius Rollen in der Luft	k _{xx}	m	18,4	14,1	21	16,1	17,4	13,3
Trägheitsradius Stampfen in der Luft	k _{yy}	m	73,6	66,5	65,6	70,2	68,8	61,5
Trägheitsradius Gieren in der Luft	k _{zz}	Э	74,5	66,8	67,3	70,2	68,8	61,5
Windabweichung längsschiffs	Aw _x	m ²	1.655	1.550	2.160	2.063	1.447	1.329
Windabweichung querschiffs	Awy	m ²	7.927	7.290	10.270	9.704	7.122	6.446

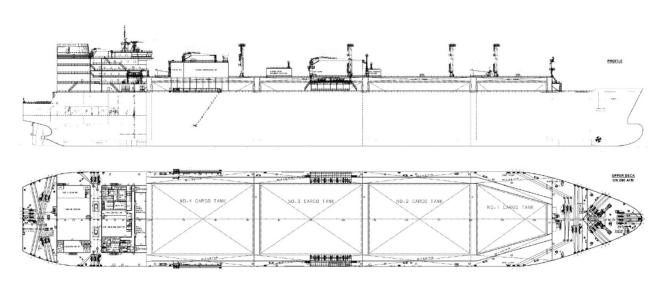


Abbildung 3-5 Dispositionszeichnung LNG-Tanker mit Membrantank 170 Tsd., Anhang G Dispositionszeichnung und vertäuanordnungen

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Umgebung	OTES engie			
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06			
TES-Code: TES-WHV-VGN-FSRU		Seite 24 von 169			

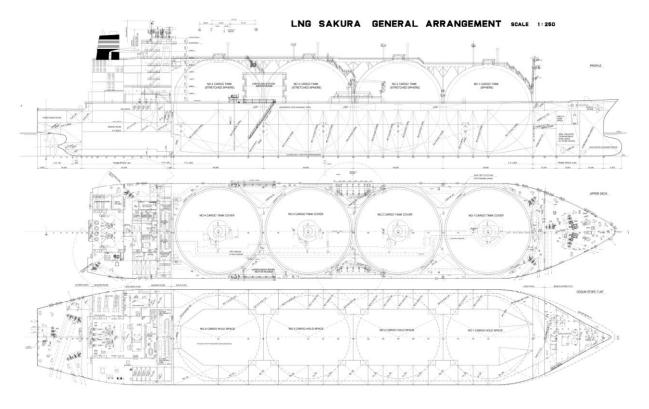


Abbildung 3-6 Dispositionszeichnung LNG-Tanker mit Kugeltank (Moss) 177 Tsd., Anhang G Dispositionszeichnung und vertäuanordnungen

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 25 von 169

3.3 Daten zur Anlegestelle und dortigen Kielfreiheit

Die FSRU wird an einem neuen Terminal in Wilhelmshaven vertäut, das 4 Anlegedalben und 6 Vertäudalben umfasst. Die Anlegeleine (Vorausrichtung der FSRU) liegt bei 321,75° N. Die Deckhöhe beträgt +11,6 m SKN, und die Liegewanne vor dem Anlegeplatz ist auf −14,0 m SKN definiert [12].

Für die Kielfreiheit (UKC) der FSRU bedeutet dies, dass Folgendes gilt:

- Der hundertjährliche extreme Niedrigwasserstand liegt bei −1,03 m SKN.
- Die Tiefe der Liegewanne beträgt -14,0 m SKN. Dies beinhaltet:
 - o 1,0 m garantierte UKC an der Anlegestelle (>1,5 % der Breite, d. h. 0,67 m);
 - o 0,5 m zur Berücksichtigung von Sedimentation.
- Daraus ergeben sich die in Tabelle 3-6 angegebenen Tiefgangseinschränkungen. Diese liegen selbst bei hundertjährlichen Ständen oberhalb des Betriebstiefgangs, wie in Tabelle 3-7dargestellt.

Der für die Deballastierung der FSRU erforderliche Zeitaufwand ist abhängig von der Ballastmenge, beträgt jedoch meist einige Stunden. Wenn niedrige Wasserstände prognostiziert werden, wird das Schiff rechtzeitig entladen und eine Vergrößerung des Tiefgangs vermieden werden. Daher sind bei einem Stand von −14,0 m SKN an der Liegewanne keine Probleme zu erwarten.

Tabelle 3-6 Max. zulässiger Tiefgang für extreme Niedrigwasserbedingungen

Wiederkehrintervall [Jahre]	Extremes Niedrigwasser [m SKN]	Max. Tiefgang [m]
100	-1,03	11,47
50	-0,92	11,58
20	-0,81	11,69
10	-0,71	11,79
5	-0,61	11,89
2	-0,49	12,01
1	-0,43	12,07

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 26 von 169

Tabelle 3-7 Geschätzter Tiefgang der voll bebunkerten FSRU Excelsior bei voller Fracht

Product	Draft		Corresponding	
LNG	Forward	Mean	Aft	Deadweight
Design draft	11.52 m	11.52 m	11.52 m	69344.0 mT
Draft full cargo/bunker	11.79 m	11.79 m	11.79 m	71923.5 mT
Max draught (summer)	12.32 m	12.32 m	12.32 m	77287.2 mT

3.4 Vertäuungssystem

3.4.1 Dalben, Fender und Quick Release Hooks (QRH)

Die Positionen der sechs Vertäudalben (*Mooring Dolphins*; MDs) und der vier Anlegedalben (*Berthing Dolphins*; BDs) des Terminals werden in der Abbildung unten gezeigt. Die Position der Dalben ist sowohl für die FSRU als auch für den 180.000 m³-LNG-Tanker (zukünftige Phase, nachdem die FSRU Wilhelmshaven verlassen hat) bemessen. Ausgehend von den PIANC-Empfehlungen sollte der Abstand zwischen den Fendern für alle Schiffstypen 0,25 bis 0,4 x Lüa (0,3 bei Standardanordnung) betragen. Die Fender müssen vollständig an den flachen Seiten der Schiffe anliegen. Zusätzlich dazu musste der Abstand zwischen BD1 und BD2 aufgrund eines möglichen Zusammenstoßes mit dem Steigrohr vergrößert werden, wodurch die inneren BDs näher beieinander liegen.

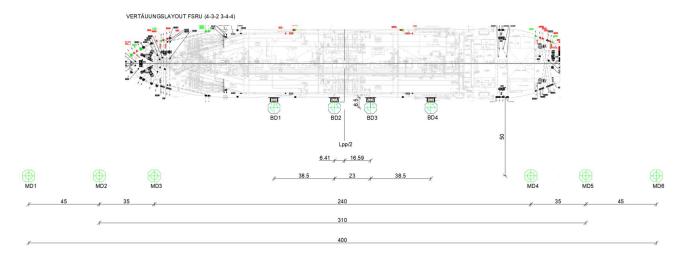


Abbildung 3-7 Lageplan des Terminals einschließlich Vertäuvorrichtungen, Anhang G Dispositionszeichnung und vertäuanordnungen

Die MDs sind jeweils mit Vierfach-QRH ausgestattet und die äußeren BDs mit Dreifach-QRH. Die Kapazität der Haken liegt bei einer Traglast (SWL) von 150 t. Die QRH-Einheiten befinden sich an allen MDs 50 m hinter der Anlegeleine und an den BDs 6,5 m dahinter. Der Gesamtabstand zwischen den äußeren QRH-Einheiten beträgt 400 m.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 27 von 169

Tabelle 3-8 zeigt die Hochdrucksammelleitung bezogen auf die FSRU mittschiffs. Mittschiffs definiert sich in Längsrichtung bei halber Lpp (Länge zwischen den Loten, Length Between Perpendiculars) und in Querrichtung bei halber Breite. Der Abstand zwischen BD2 und der FSRU mittschiffs beträgt 6,41 m.

Tabelle 3-8 Hochdrucksammelleitung bezogen auf die FSRU mittschiffs

Hochdrucksammelleitung bezogen auf mittschiffs (Lpp/2)	
X [m]	27,74
Y [m]	18,55
Z ab Kiel [m]	30,80

Die Höhe jeder Dalbenplattform beträgt +11,0 m SKN. Jede Anlegedalbe ist mit einer einzelnen Fendereinheit samt Verkleidung ausgestattet. Die für die Analyse verwendeten Fender sind vom Typ CSS 2250 G2.9. Sie haben eine Nennreaktionskraft von 3.642 kN bei 52,5 % Durchbiegung (= 1,18 m). Die Höhe der Mittelachse der Fender liegt bei +7,00 m SKN. Der Reibungskoeffizient wurde aufgrund des reibungsarmen Verkleidungsmaterials UHMW-PE mit 0,2 angesetzt. Die Fendereigenschaften werden in Abbildung 3-8 gezeigt.

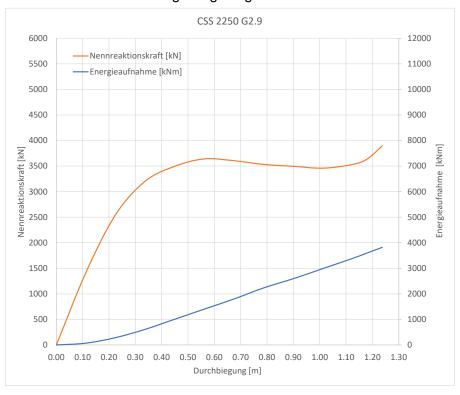


Abbildung 3-8 Fendereigenschaften der fest montierten Fender [13]

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 28 von 169

Die Verkleidungen der Fender liegen in allen Szenarien vollständig an der flachen Seite der FSRU an, wie in Abbildung 3-10 für die FSRU unter extremen Hochwasserbedingungen in Ballast gezeigt wird.

Abbildung 3-9 Kontakt der fest montierten Fender mit der flachen Seite der FSRU unter extremen Hochwasserbedingungen in Ballast, Anhang G Dispositionszeichnung und vertäuanordnungen

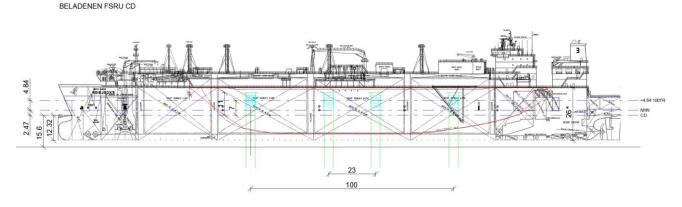


Abbildung 3-10 Kontakt der fest montierten Fender mit der flachen Seite der bei Wasserstand SKN beladenen FSRU, Anhang G Dispositionszeichnung und vertäuanordnungen

An der FSRU sind fünf Jumbo-Schwimmfender (50 kPa) mit einem Radius von $9.0 \text{ m} \times 4.5 \text{ m}$ und einer Nennreaktionskraft von 5.747 kN bei 60 % Durchbiegung (= 2.70 m) befestigt. Der Reibungskoeffizient wurde aufgrund der Tatsache, dass die Schwimmfender nass sein werden, mit 0.2 angesetzt.

Die Schwimmfendersysteme wurden in einem Abstand von 18 m - 28 m - 15 m - 15 m entlang der Steuerbordseite der FSRU vom Bug bis zum Heck platziert. Sie gewährleisten einen guten Kontakt mit den flachen Seiten der FSRU und der LNG-Tanker, Abbildung 3-12 und Abbildung 3-13.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	Torto vimomionavon. Voltadoladio	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 29 von 169

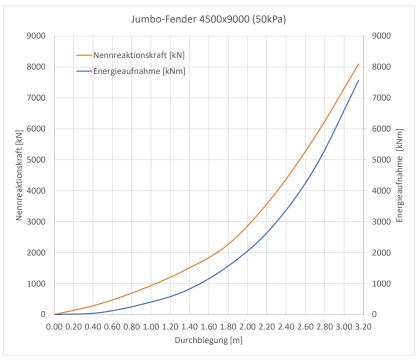


Abbildung 3-11 Fendereigenschaften der Schwimmfender [14]

Flachen seite 177k Moss LNGC
Flachen seite 170k Membrane LNGC
Flachen seite 138k Membrane LNGC
Flachen seite FSRU

Beladenen FSRU Ballastierten LNGC

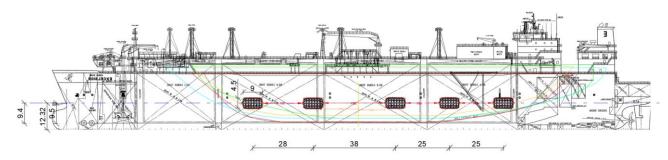


Abbildung 3-12 Kontakt der Schwimmfender mit dem flachen Bereich der beladenen FSRU und der LNG-Tanker in Ballast, Anhang G Dispositionszeichnung und vertäuanordnungen

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 30 von 169

Flachen seite 177k Moss LNGC
Flachen seite 170k Membrane LNGC
Flachen seite 138k Membrane LNGC
Flachen seite FSRU

Ballastierten FSRU Beladenen LNGC

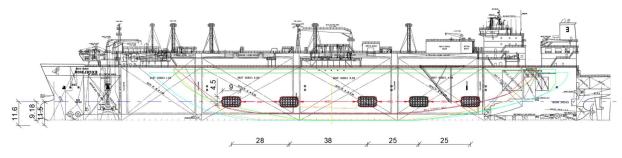


Abbildung 3-13 Kontakt der Schwimmfender mit dem flachen Bereich der FSRU in Ballast und der beladenen LNG-Tanker, Anhang G Dispositionszeichnung und vertäuanordnungen

3.4.2 Vertäuungsleinen

Anzahl, Typ und Durchmesser der Vertäuungsleinen wurden in [12] angegeben und werden nachstehend zusammengefasst.

Vertäuungsseile – Verzinkter Stahldraht, 42 mm, Mindestbruchlast (MBL) – 124 T, Länge – 280 m.

Recker – Polyolefin & Polyester, 94 mm, MBL - 158 T, Länge – 11 m oder 22 m. Vertäuschäkel – Tønsberg, MBL – 180 T

Tabelle 3-9 Eigenschaften der Vertäuungsleine [10], [12]

Parameter	FSRU Excelsior und LNG-Tanker
Leinentyp	Verzinkter Stahldraht
Durchmesser [mm]	42
MBL [kN]	1.216
Tragfähigkeit [kN]	669 (= 55 % MBL)
Recker verwendet	ja
Тур	Polyolefin & Polyester
Länge des Reckers [m]	11
Durchmesser des Reckers [mm]	94
Mindestbruchlast des Reckers [kN]	1.549
Tragfähigkeit des Reckers [kN]	775 (= 50 % MBL)

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 31 von 169

Abbildung 3-14 zeigt die Last-Streckungseigenschaften der Drähte und Nylon-Recker. Die Steifigkeit des Seils wird durch das Vorhandensein des Reckers verringert. Diese zusätzliche Elastizität der kombinierten Seile ermöglicht es dem Schiff, flexibler auf die äußeren Lasten zu reagieren, und reduziert dadurch die dynamischen Lasten in den Seilen. Recker werden im Allgemeinen entweder mithilfe von mechanischen Verbindungsvorrichtungen (d. h. Verbindungsgliedern zum Vertäuen und Vertäuschäkeln mit Stahldrahtseilen) oder direkt mittels Ankerstich befestigt.

Für Vertäuungen an der geschützten Pierseite, wo wenig oder gar keine welleninduzierte Schiffsbewegungen erfolgen, werden 11-m-Standard-Recker verwendet. In der vorliegenden DMA-Analyse wurden 11-m-Recker verwendet.

22-m-Recker werden im Allgemeinen an exponierten Anlegestellen an derjenigen Seite des Anlandeterminals verwendet, an der erhebliche Schiffsbewegungen erfolgen. Diese langen Recker werden meist nur bei Querleinen benötigt und sind möglicherweise für die Spring gar nicht erforderlich.

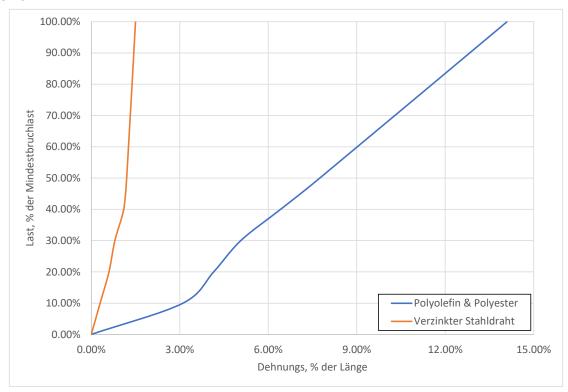


Abbildung 3-14 Eigenschaften der Vertäuungsleine [15], [16]

3.4.3 Vertäuanordnungen

Die Vertäuanordnung der FSRU wird in Abbildung 3-15 gezeigt. Sie besteht aus 20 Leinen (4-3-2 3-4-4) aus dem gleichen Material (Stahldraht + synthetischer Recker), die alle von einer Winde ausgehen.

Die anfängliche Vorspannung der Leinen wurde als 7,5 % (9 t) der MBL der Drähte für jede von einer Winde ausgehende Leine an Bord des vertäuten Schiffs definiert. Diese Vorspannung und

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN		Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 32 von 169

Ausgangsposition des Schiffs wurde mit dem DMA ohne metoceane Bedingungen kalibriert, sodass die Hochdrucksammelleitung der FSRU an der Steigrohrverbindung ausgerichtet ist und der LNG-Tanker an der Steuerbord-Ladungssammelleitung der FSRU.

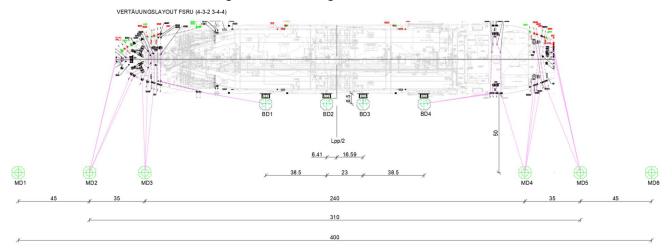


Abbildung 3-15 Vertäuanordnung der FSRU, Anhang G Dispositionszeichnung und vertäuanordnungen

Die Position der Dalben ermöglicht auch die effektive Vertäuung von Schiffen der Q-Max-Klasse, vgl. Abbildung Abbildung 3-2 (die Vertäuleinen werden im Muster 2-3-2-2 2-2-3-2 angeordnet); dies wird im vorliegenden Bericht nicht näher untersucht.

Die Anordnung für den Schiff-zu-Schiff-Betrieb ist in Abbildung 3-3 dargestellt.

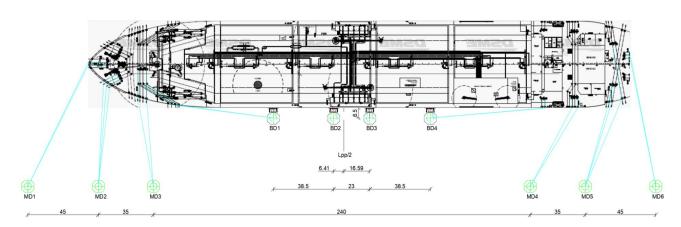


Abbildung 3-16. Vertäuanordnung Q-Max, Anhang G Dispositionszeichnung und vertäuanordnungen

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 33 von 169

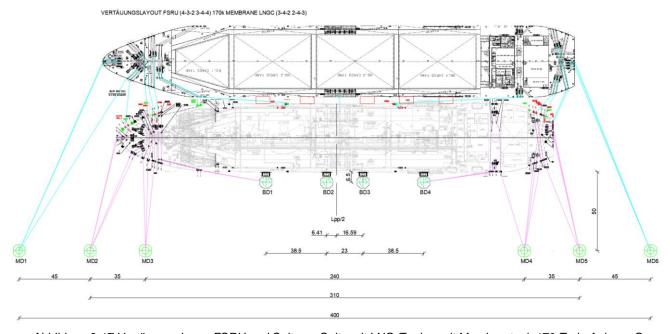


Abbildung 3-17 Vertäuanordnung FSRU und Seite an Seite mit LNG-Tanker mit Membrantank 170 Tsd., Anhang G Dispositionszeichnung und vertäuanordnungen

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 34 von 169

Die Längen und Winkel der Vertäuungsleinen für die FSRU-Vertäuanordnung sind in Tabelle 3-10 angegeben (die Leinen sind vom Bug bis zum Heck durchnummeriert). Für den einkommenden LNG-Tanker sind die Längen und Winkel der Leinen in Tabelle 3-11 bis Tabelle 3-13 dargestellt. Die Leinen der FSRU tragen die Nummern 1 bis 20, und die Leinen des LNG-Tankers die Nummern 21 bis 38. Von den Dalben und der FSRU werden die vertikalen Winkel gemessen.

Für die FSRU ist Folgendes festzustellen:

- Die Vertikalwinkel der Leinen sind klein und selbst im schlimmsten Fall (Extremhochwasser und FSRU in Ballast) nicht größer als 18°. Dies liegt unterhalb des vom OCIMF [3] und von der DNV [1] empfohlenen Kriteriums von 25°.
- Die Horizontalwinkel der Leinen betragen bei den Spring 8–10° und bei den Vor- und Achterleinen und den Querleinen ca. 60–90°.

Die Gesamtlängen der Leinen liegen zwischen 50 und 95 m.

Tabelle 3-10 Längen und Winkel der Vertäuungsleinen der FSRU

	Horiz.	oriz.			WL 100 BELAD		SK	N BEL	ADEN		/L 100 · BALLA		SKN	I IN BA	LLAST
Nr.	Winkel [°]	[m]	Lo [m]	Ltot [m]	Vert. Winkel [°]										
1	76,9	9,9	75,3	85,1	7,6	74,7	84,5	2,1	75,8	85,6	10,0	74,8	84,7	4,5	
2	76,6	9,9	73,3	83,2	7,8	72,7	82,5	2,1	73,8	83,7	10,2	72,9	82,7	4,6	
3	67,0	7,9	68,1	76,0	8,4	67,4	75,3	2,3	68,6	76,6	11,0	67,6	75,5	4,9	
4	65,3	6,4	68,3	74,7	8,4	67,6	74,1	2,3	68,8	75,3	11,0	67,8	74,3	4,9	
5	88,4	23,6	59,4	83,0	9,7	58,6	82,2	2,6	60,0	83,6	12,6	58,8	82,5	5,7	
6	88,4	23,9	58,2	82,1	9,9	57,4	81,3	2,7	58,8	82,7	12,9	57,6	81,5	5,8	
7	84,0	22,4	57,7	80,1	10,0	56,9	79,3	2,7	58,3	80,7	13,0	57,1	79,5	5,8	
8	9,9	47,3	45,1	92,4	12,8	44,1	91,4	3,5	45,9	93,2	16,6	44,4	91,7	7,5	
9	10,3	47,5	43,0	90,5	13,4	41,9	89,4	3,7	43,8	91,3	17,4	42,2	89,7	7,9	
10	8,9	38,1	43,4	81,5	13,3	42,3	80,4	3,6	44,2	82,3	17,3	42,6	80,7	7,8	
11	8,6	5,4	45,0	50,3	12,8	43,9	49,3	3,5	45,8	51,1	16,7	44,2	49,6	7,6	
12	8,2	5,4	47,1	52,4	12,2	46,1	51,5	3,3	47,9	53,2	15,9	46,4	51,7	7,2	
13	73,1	38,3	53,2	91,5	10,8	52,3	90,6	2,9	53,9	92,2	14,1	52,6	90,9	6,4	
14	84,1	5,6	55,8	61,4	5,3	55,6	61,2	-2,2	56,2	61,8	8,5	55,6	61,2	1,0	
15	82,4	5,0	56,5	61,6	5,2	56,3	61,4	-2,2	56,9	61,9	8,4	56,3	61,3	1,0	
16	79,6	25,6	58,2	83,8	5,1	58,0	83,6	-2,1	58,5	84,2	8,1	58,0	83,6	1,0	
17	68,2	25,1	62,2	87,3	4,7	62,0	87,1	-2,0	62,5	87,6	7,6	62,0	87,1	0,9	
18	77,2	3,9	76,8	80,7	3,8	76,7	80,6	-1,6	77,1	81,0	6,2	76,7	80,6	0,7	
19	77,6	3,9	79,3	83,2	3,7	79,1	83,1	-1,6	79,5	83,5	6,0	79,1	83,0	0,7	
20	77,9	3,9	81,1	85,0	3,6	81,0	84,9	-1,5	81,4	85,3	5,8	80,9	84,9	0,7	

Für den Schiff-zu-Schiff-Betrieb ist Folgendes festzustellen:

- Die Vertikalwinkel der Leinen sind klein und nicht größer als 15°. Dies liegt unterhalb des vom OCIMF [3] und von der DNV [1] empfohlenen Kriteriums von 25°.
- Die Horizontalwinkel der Leinen betragen bei den Spring 2–6° und bei den Vor- und Achterleinen und den Querleinen ca. 40–90°.

Die Gesamtlängen der Leinen liegen zwischen 30 und 150 m.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 35 von 169

Tabelle 3-11 Längen und Winkel der Vertäuungsleinen der FSRU und des LNG-Tankers mit Membrantank 138 Tsd.

Nr.	Winkel	Lob	TWL 5 JR FSF BELADEN LNG Lob BALLAST			TWL 5 JR FSRU IN BALLAST LNGC IN BALLAST				SRU BE	LADEN LLAST	SKN FSRU IN BALLAST LNGC IN BALLAST		
IVI.		[m]	Lo [m]	Ltot [m]	Vert. Winkel [°]	Lo [m]	Ltot [m]	Vert. Winkel [°]	Lo [m]	Ltot [m]	Vert. Winkel [°]	Lo [m]	Ltot [m]	Vert. Winkel [°]
21	62,6	9,1	135,5	144,6	4,9	135,4	144,4	4,0	135,1	144,2	2,3	135,1	144,1	1,4
22	60,2	8,3	131,8	140,1	5,0	131,7	139,9	4,2	131,4	139,7	2,4	131,4	139,6	1,5
23	57,0	7,3	131,3	138,6	5,0	131,1	138,5	4,2	130,9	138,2	2,4	130,8	138,1	1,5
24	79,0	8,9	30,9	39,8	5,1	30,8	39,8	-3,7	30,9	39,8	5,1	30,8	39,8	-3,7
25	80,9	27,0	20,7	47,7	7,6	20,6	47,6	-5,6	20,7	47,7	7,6	20,6	47,6	-5,6
26	76,9	28,8	19,0	47,9	8,2	18,9	47,8	-6,1	19,0	47,9	8,2	18,9	47,8	-6,1
27	81,3	26,9	16,3	43,2	9,6	16,2	43,1	-7,1	16,3	43,2	9,6	16,2	43,1	-7,1
28	4,3	52,2	56,7	109,0	2,7	56,7	108,9	-2,0	56,7	109,0	2,7	56,7	108,9	-2,0
29	4,3	51,6	55,8	107,4	2,8	55,7	107,4	-2,1	55,8	107,4	2,8	55,7	107,4	-2,1
30	3,3	9,7	62,4	72,0	2,5	62,3	72,0	-1,8	62,4	72,0	2,5	62,3	72,0	-1,8
31	3,3	10,0	63,7	73,7	2,4	63,7	73,7	-1,8	63,7	73,7	2,4	63,7	73,7	-1,8
32	89,6	9,7	13,7	23,4	11,4	13,7	23,4	-11,1	13,7	23,4	11,4	13,7	23,4	-11,1
33	89,7	10,7	14,8	25,4	10,6	14,8	25,4	-10,3	14,8	25,4	10,6	14,8	25,4	-10,3
34	85,9	29,9	18,2	48,1	8,6	18,2	48,1	-8,4	18,2	48,1	8,6	18,2	48,1	-8,4
35	85,1	28,0	19,4	47,4	8,1	19,4	47,4	-7,9	19,4	47,4	8,1	19,4	47,4	-7,9
36	63,2	4,3	137,0	141,3	2,8	136,9	141,2	1,7	136,9	141,2	0,2	136,9	141,2	-0,9
37	63,7	4,3	139,3	143,6	2,8	139,2	143,5	1,7	139,1	143,4	0,2	139,1	143,4	-0,9
38	64,0	4,4	140,7	145,1	2,7	140,6	145,0	1,7	140,6	144,9	0,2	140,6	144,9	-0,9

Tabelle 3-12 Längen und Winkel der Vertäuungsleinen der FSRU und des LNG-Tankers mit Membrantank 170 Tsd.

Nr.	Horiz. Winkel [°]	Lob [m]	TWL 5 JR FSRU BELADEN LNGC IN BALLAST		TWL 5 JR FSRU IN BALLAST LNGC IN BALLAST				SRU BE		SKN FSRU IN BALLAST LNGC IN BALLAST			
141.			Lo [m]	Ltot [m]	Vert. Winkel [°]	Lo [m]	Ltot [m]	Vert. Winkel [°]	Lo [m]	Ltot [m]	Vert. Winkel [°]	Lo [m]	Ltot [m]	Vert. Winkel [°]
21	66,1	10,2	132,9	143,1	5,1	132,7	142,9	4,1	132,5	142,7	2,4	132,4	142,6	1,5
22	66,0	10,6	131,2	141,8	5,1	131,0	141,6	4,2	130,8	141,4	2,5	130,7	141,3	1,5
23	58,0	10,2	129,5	139,7	5,2	129,4	139,6	4,2	129,1	139,3	2,5	129,1	139,3	1,5
24	84,2	12,4	30,1	42,5	5,6	30,1	42,4	-4,6	30,1	42,5	5,6	30,1	42,4	-4,6
25	85,0	23,7	19,4	43,0	8,7	19,3	43,0	-7,2	19,4	43,0	8,7	19,3	43,0	-7,2
26	77,6	27,4	18,6	46,0	9,0	18,5	45,9	-7,5	18,6	46,0	9,0	18,5	45,9	-7,5
27	81,0	26,2	15,8	42,1	10,6	15,8	42,0	-8,8	15,8	42,1	10,6	15,8	42,0	-8,8
28	3,6	36,8	56,7	93,6	3,0	56,7	93,5	-2,4	56,7	93,6	3,0	56,7	93,5	-2,4
29	3,6	36,7	55,5	92,2	3,0	55,4	92,1	-2,5	55,5	92,2	3,0	55,4	92,1	-2,5
30	2,6	7,8	78,5	86,3	2,1	78,5	86,3	-1,8	78,5	86,3	2,1	78,5	86,3	-1,8
31	2,6	8,5	79,4	88,0	2,1	79,4	87,9	-1,7	79,4	88,0	2,1	79,4	87,9	-1,7
32	49,5	15,6	16,0	31,5	8,2	16,1	31,7	-11,0	16,0	31,5	8,2	16,1	31,7	-11,0
33	61,5	12,0	16,6	28,6	7,9	16,7	28,8	-10,6	16,6	28,6	7,9	16,7	28,8	-10,6
34	67,1	31,0	22,2	53,2	5,9	22,3	53,3	-7,9	22,2	53,2	5,9	22,3	53,3	-7,9
35	66,2	32,3	24,6	56,9	5,3	24,7	57,0	-7,1	24,6	56,9	5,3	24,7	57,0	-7,1
36	67,5	4,5	126,2	130,7	2,8	126,1	130,6	1,8	126,1	130,5	0,0	126,1	130,6	-1,0
37	67,9	4,3	128,0	132,2	2,8	127,9	132,2	1,8	127,8	132,1	0,0	127,8	132,1	-0,9
38	68,2	4,3	129,4	133,7	2,8	129,3	133,6	1,8	129,3	133,6	0,0	129,3	133,6	-0,9

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 36 von 169

Tabelle 3-13 Längen und Winkel der Vertäuungsleinen der FSRU und des LNG-Tankers mit Membrantank 177 Tsd.

Nr.	Horiz. Winkel	Lob	BELA		TWL 5 JR FSRU BELADEN LNGC IN BALLAST		TWL 5 JR FSRU IN BALLAST LNGC IN BALLAST			SRU BE		SKN FSRU IN BALLAST LNGC IN BALLAST		
IVI.	[°]	[m]	Lo [m]	Ltot [m]	Vert. Winkel [°]	Lo [m]	Ltot [m]	Vert. Winkel [°]	Lo [m]	Ltot [m]	Vert. Winkel [°]	Lo [m]	Ltot [m]	Vert. Winkel [°]
21	59,4	25,5	138,5	164,0	5,2	138,4	163,9	4,4	138,1	163,6	2,7	138,0	163,5	1,9
22	70,3	14,8	37,0	51,8	5,9	36,8	51,6	-2,1	37,0	51,8	5,9	36,8	51,6	2,8
23	67,7	14,0	35,2	49,2	6,2	35,0	49,0	-2,2	35,2	49,2	6,2	35,0	49,0	3,0
24	41,3	21,2	26,6	47,8	8,3	26,4	47,6	-2,9	26,6	47,8	8,3	26,4	47,6	4,0
25	41,1	20,5	25,0	45,5	8,8	24,8	45,2	-3,1	25,0	45,5	8,8	24,8	45,3	4,2
26	35,0	42,0	26,1	68,0	8,4	25,8	67,8	-2,9	26,1	68,0	8,4	25,8	67,8	4,0
27	34,8	43,6	24,0	67,5	9,2	23,7	67,3	-3,2	24,0	67,5	9,2	23,7	67,3	4,4
28	5,6	11,4	51,8	63,2	4,2	51,7	63,1	-1,5	51,8	63,2	4,2	51,7	63,1	2,0
29	5,5	14,2	52,3	66,5	4,2	52,2	66,4	-1,4	52,3	66,5	4,2	52,2	66,4	2,0
30	3,1	12,9	72,8	85,7	3,0	72,7	85,6	-1,0	72,8	85,7	3,0	72,7	85,6	1,4
31	3,2	9,6	72,2	81,8	3,0	72,1	81,7	-1,0	72,2	81,8	3,0	72,1	81,7	1,4
32	45,5	16,2	19,8	36,0	14,4	19,1	35,3	-0,7	19,8	36,0	14,4	19,3	35,6	8,7
33	55,6	12,9	19,9	32,8	14,3	19,3	32,2	-0,7	19,9	32,8	14,3	19,5	32,4	8,6
34	68,9	11,1	22,7	33,7	12,5	22,1	33,2	-0,6	22,7	33,7	12,5	22,3	33,4	7,5
35	58,5	32,6	28,4	61,1	10,0	28,0	60,7	-0,5	28,4	61,1	10,0	28,2	60,8	6,0
36	66,6	28,9	114,4	143,4	4,5	114,3	143,2	3,5	114,1	143,0	1,4	114,1	143,0	0,4
37	73,2	7,7	123,4	131,1	4,1	123,2	130,9	3,2	123,1	130,8	1,3	123,0	130,7	0,3
38	73,4	7,7	125,2	132,9	4,1	125,1	132,8	3,2	124,9	132,6	1,3	124,9	132,6	0,3

3.5 Bewertungskriterien

Die in diesem Abschnitt genannten Bewertungskriterien umfassen Folgendes:

- Maximal zulässige Bewegungen für den sicheren Betrieb;
- Maximallasten in allen Vertäuleinen, Dalben und Fendern.

FSRU-Hochdruck-Bewegungskriterien

Das für die Bewegungen der FSRU zulässige Maximum hängt vom sicheren Betriebsbereich der Hochdrucksammelleitung ab. Die Hochdrucksammelleitung befindet sich an der FSRU bei x=27,74 m, y=18,55 m und z=30,80 m (ab Kiel).

Es wurden keine Kriterien festgelegt; die Bewertung erfolgt ausgehend von den Maximallasten im Vertäusystem.

Schiff-zu-Schiff-Bewegungskriterien

Die maximal zulässigen Relativbewegungen zwischen der FSRU und den anlegenden LNG-Tankern hängt vom sicheren Betriebsbereich der flexiblen Schläuche zwischen den Schiffen ab.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie		
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06		
TES-Code: TES-WHV-VGN-FSRU		Seite 37 von 169		

Tabelle 3-14 Bewegungskriterien

Bewegungsmodus	Schnellen [m]	Versetzen [m]	Tauchen [m]	Rollen, Stampfen Gieren [°]	und
Kriterium Löschen der FSRU (absolute Bewegungen der					
Hochdrucksammelleitung)					
Kriterium Schiff-zu-Schiff-Betrieb				_	
(relative Spitze-zu-Spitze-Bewegungen der Hochdrucksammelleitungen der Schiffe)	2,00	1,00	_		

Ladekriterien

Die Ladekriterien, die in Tabelle 3-15 zusammengefasst sind, wurden zur Bewertung der Integrität des Vertäusystems unter Betriebsbedingungen verwendet, um die Grenzbedingungen für das sichere Verbleiben an der Anlegestelle zu erhalten. Für die Vertäuleinen wird die Tragfähigkeit (Working Load Limit; WLL) herangezogen, die 55 % der Mindestbruchlast (MBL) der Stahldrähte entspricht, wie durch das OCIMF empfohlen wird [3]. Die Vertäuleinen sind das schwächste Glied im Vertäusystem, da die Nutzlast (SWL) der Quick Release Hooks (QRHs) (150 t) größer ist als die MBL der Vertäuleinen (124 t). Als maximal zulässige Last für die Dalben wird mindestens 4 x SWL der QRHs oder 3 x SWL bei den Anlegedalben angenommen. Für die Fender wurden die Nennlast und die zugehörige Durchbiegung nach Angaben des Fender-Herstellers [13] als Kriterium verwendet.

Tabelle 3-15 Ladekriterien

Komponente		Kriterium		
Vertäuleine (FSRU, I	_NG-Tanker)	WLL = 669 kN (55 % MBL)		
QRH Dalbe (4 QRH / 3 QRH)		SWL = 1.472 kN (> MBL der befestigten Leine) SWL = 5.886 kN / 4.415 kN		
				Fender
(Anlegestelle)	Durchbiegung	1,18 m (52,5 %)		
Fender (Schiff-zu-	Reaktionskraft	5.747 kN		
Schiff)	Durchbiegung	2,70 m (60 %)		

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 38 von 169

4 FSRU-Vertäuanalyse

4.1 Einleitung

In diesem Kapital wird ausschließlich die DMA für die FSRU vorgestellt. Dies beinhaltet auch die Grenzbedingungen für das sichere Verbleiben an der Anlegestelle.

Ausgehend von den Ergebnissen einer umfangreichen Sensitivitätsanalyse und zahlreicher Szenarien für verschiedene Umgebungsverhältnisse wurde eine verbesserte Vertäuanordnung erstellt, die in Abschnitt 4.3 beschrieben wird. Die Sensitivitätsanalyse, die für verschiedene metoceane Bedingungen und Komponenten des Vertäusystems durchgeführt wurde, ist als Anhang C Sensitivitätsanalyse beigefügt.

Die Grenzbedingungen für das sichere Verbleiben an der Anlegestelle sind in Abschnitt 4.4 dargelegt, und die Wahrscheinlichkeit der Überschreitung dieser Bedingungen wird in Abschnitt 4.5 behandelt. Abschließend werden in Abschnitt 4.6 die Schlussfolgerungen vorgestellt.

4.2 Vorläufige Schätzung der maximalen Hochdruck-Bewegungen der FSRU

Vor der Durchführung der vorgestellten DMA-Analyse basierten die maximal zulässigen Bewegungen der FSRU auf einer vorläufigen Schätzung. Als empfohlener maximaler Versatzbereich wurde ein Halbkreis mit einem Radius von 3 m geschätzt. Die vorläufige Studie der horizontalen Verlagerungen der FSRU-Sammelleitung berücksichtigte Folgendes:

- einen herkömmlichen Vertäuplan für die FSRU mit 138.000 m³, die an einem gewöhnlichen Liegeplatz mit 260.000 m³ Kapazität vertäut ist. Dies diente dazu, zu prüfen, ob dieser Plan den OCIMF/SIGTTO-Standardumgebungskriterien entspricht (statischer Wind bei 60 Knoten und verschiedene Strömungsgeschwindigkeiten). Dies traf zu;
- eine Bereichsanalyse, bei der das Schiff statisch durch Schnellen und Versetzen bewegt wird, bis die maximale Tragfähigkeit der Vertäuleinen erreicht ist.

Wichtig ist dabei, dass mehrere Vertikalbewegungskomponenten berücksichtigt werden müssen, beispielsweise für Flut/Sturmflut, Tiefgangsschwankungen und durch vertikale Wellen hervorgerufene Bewegungsreaktionen.

4.3 Verbesserte Vertäuanordnung

Die verbesserte Vertäuanordnung für die FSRU, die gestützt auf die Ergebnisse des ersten DMA-Simulationssatzes definiert wurde, vgl. Anhang C Sensitivitätsanalyse, umfasst 20 Leinen (4-3-2 3-4-4), wie in Abbildung 4-1 dargelegt.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie		
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06		
TES-Code: TES-WHV-VGN-FSRU		Seite 39 von 169		

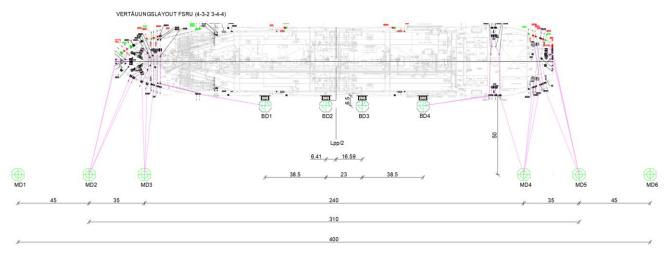


Abbildung 4-1 Verbesserte Vertäuanordnung für die FSRU, Anhang G Dispositionszeichnung und vertäuanordnungen

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 40 von 169

4.4 Grenzbedingungen für das sichere Verbleiben an der Anlegestelle

Zur Ableitung der Umgebungsgrenzbedingungen für das sichere Verbleiben an der Anlegestelle wurden für verschiedenste Bedingungen dynamische Vertäuungssimulationen durchgeführt. Diese Ergebnisse wurden zur Berechnung der zugehörigen "Vertäuungs'-Ausfallzeit ausschließlich für die FSRU verwendet.

Die Analyse ergab folgende Ergebnisse:

- Maximalbewegungen der Hochdrucksammelleitung.
- Maximallasten in allen Vertäuleinen, Dalben und Fendern.
- Grenzbedingungen, Wahrscheinlichkeit einer Überschreitung der Umgebungsgrenzbedingungen sowie zu erwartende Häufigkeit, mit der die FSRU die Anlegestelle verlassen muss.

Anhang D Ergebnisse für die FSRU enthält die metoceanen Grenzbedingungen und die DMA-Ergebnisse für die verbesserte Vertäuanordnung sowohl in Ballast als auch in beladenem Zustand bei hundertjährlichem Hochwasserstand und bei Wasserstand SKN.

Die Windgrenzgeschwindigkeiten wurden ausgehend von den Kriterien zur maximalen Leinenlast für jede Windrichtung extrahiert und sind in Tabelle 4-1 dargelegt. Das dargelegte Ergebnis ist die am stärksten einschränkende Bedingung aller simulierten Szenarien, einschließlich von Wind zusammen mit Wellen und Wind mit Wellen und Strömungen.

Tabelle 4-1 Für die FSRU extrahierte Umgebungsgrenzbedingungen

		Hundertjährliche Winde [m/s]										
	0	30	60	90	120	150	180	210	240	270	300	330
	27,22	22,64	17,98	20,95	17,94	16,78	21,63	24,17	26,36	25,96	26,81	27,83
Stündliche	Windgre	nzgeschw	vindigkei	t basiere	nd auf d	en Kriter	ien zur n	naximale	n Leiner	ılast [m/s	5]	
Schiff, Ladezustand und Herkunftsrichtung aus (°N)												
Wasserstand	0	30	60	90	120	150	180	210	240	270	300	330
FSRU in Ballast bei SKN				>100JR				21,51	21,84	23,72	>100	OJR
FSRU beladen bei SKN		>100JR				24,40		>100JR				
FSRU in Ballast bei HW				>100JR				21,56	22,21	23,61	>100)JR
FSRU beladen bei HW				>100JR				23,07	23,88	25,01	>100	OJR

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 41 von 169

4.5 Wahrscheinlichkeit einer Überschreitung der Umgebungsgrenzbedingungen

Anhand der in der DMA ermittelten Grenzbedingungen lässt sich in Kombination mit Zeitreihen metoceaner Daten die zu erwartende Häufigkeit schätzen, mit der die FSRU die Anlegestelle verlassen muss.

Tabelle 4-2 enthält die für jede Windrichtung definierten Windgrenzgeschwindigkeiten in allen Szenarien, wie in Anhang D Ergebnisse für die FSRU untersucht. Nach der Herstellung eines Zusammenhangs zwischen dem Modell (NORA3) und den Messungen am Leuchtturm Alte Weser zeigt die Tabelle eine erste Abschätzung der Überschreitungswahrscheinlichkeiten für die verschiedenen Windgeschwindigkeitsgrenzen.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 42 von 169

Tabelle 4-2 Wahrscheinlichkeit einer Überschreitung der für die FSRU extrahierten Umgebungsgrenzbedingungen. Farbskala ab 0–10 % Ausfallzeit

					Hund	ertjährlicl	ne Winde	[m/s]				
	0	30	60	90	120	150	180	210	240	270	300	330
	27,22	22,64	17,98	20,95	17,94	16,78	21,63	24,17	26,36	25,96	26,81	27,83
Stünd	liche Wind	dgrenzges	chwindig	keit basie	rend auf	den Kriter	ien zur m	aximalen	Leinenlas	st [m/s]		
Schiff, Ladezustand und					Herl	unftsrich	tung aus	(°N)				
Wasserstand	0	30	60	90	120	150	180	210	240	270	300	330
FSRU in Ballast bei SKN				>100JR				21,51	21,84	23,72	>10	0JR
FSRU beladen bei SKN				>10	0JR				24,40		>100JR	
FSRU in Ballast bei HW				>100JR				21,56	22,21	23,61	>10	0JR
FSRU beladen bei HW				>100JR				23,07	23,88	25,01	>10	0JR
		Über	schreitun	gswahrsc	heinlichk	eit im Dur	chschnitt	sjahr				
Schiff, Ladezustand und					Herk	kunftsrich	tung aus	(°N)				
Wasserstand	0	30	60	90	120	150	180	210	240	270	300	330
FSRU in Ballast bei SKN	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %
FSRU beladen bei SKN	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %
FSRU in Ballast bei HW	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %
FSRU beladen bei HW	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 43 von 169

4.6 Schlussfolgerungen

Die wichtigsten Schlussfolgerungen für die FSRU lauten:

- Die verbesserte Vertäuungsanordnung ist 4-3-2-3-4-4 (MD2-MD3-BD1-BD4-MD4-MD5);
- Bezogen auf die Lasten im Vertäusystem bildet Wind die vorherrschende Kraft. Wellen haben eine geringere Wirkung, die deutlicher ausfällt, wenn die FSRU bei Wasserstand SKN in Ballast ist. Strömungen wirken sich schwächer aus.
- Die Überschreitungswahrscheinlichkeit beträgt ausgehend vom normalen Windklima am Projektstandort gemäß der Zeitreihe 0,00 % für ein durchschnittliches Jahr. Die Vertäuung der FSRU hält hundertjährlichen Wiederkehrintervallbedingungen für Winde aus 0–180° N und 300–330° N stand, in Kombination mit Wellen und Strömungen. Bezüglich der anderen Windrichtungen gilt:
 - o aus 210° N begrenzt auf 21 m/s (Wiederkehrintervall zwischen 20 und 50 Jahren)
 - 240° N ist begrenzt auf 21 m/s (Wiederkehrintervall zwischen 10 und 20 Jahren)
 - o aus 270° N begrenzt auf 23 m/s (Wiederkehrintervall zwischen 20 und 50 Jahren)
- Die zu erwartende Häufigkeit, mit der die FSRU die Anlegestelle verlassen muss, ist gemäß den ermittelten Zeitreihen ein Mal alle paar Jahre.
- Bewegungen beziehen sich auf absolute Bewegungen der Hochdrucksammelleitung bezogen auf die Ausgangsposition. Alle Simulationsbewegungen liegen innerhalb des geschätzten maximalen Betriebsbereichs von 3 m. Die ermittelte maximale betriebsinduzierte Schnellbewegung der Hochdrucksammelleitung beträgt 1,07 m, und ihr maximaler betriebsinduzierter Versatz beträgt 1,08 m.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie			
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06			
TES-Code: TES-WHV-VGN-FSRU		Seite 44 von 169			

5 Schiff-zu-Schiff-Vertäuanalyse

5.1 Einleitung

Es wurden dynamische Vertäuungssimulationen für die Betriebsbedingungen durchgeführt, um davon die Umgebungsgrenzbedingungen und die zugehörige "Vertäuungs"-Ausfallzeit für die FSRU und die Seite an Seite mit dieser vertäuten LNG-Tanker abzuleiten.

Die Analyse ergab folgende Ergebnisse:

- Maximale absolute Bewegungen der Hochdrucksammelleitung der FSRU und relative Spitzezu-Spitze-Bewegungen der Hochdrucksammelleitungen der Schiffe im Schiff-zu-Schiff-Betrieb.
- Maximallasten in allen Vertäuleinen, Dalben und Fendern.
- Grenzbedingungen und Wahrscheinlichkeit einer Überschreitung der Umgebungsgrenzbedingungen.

5.2 Verbesserte Vertäuanordnung

Die verbesserte Vertäuanordnung für die FSRU, die gestützt auf die Ergebnisse des ersten DMA-Simulationssatzes definiert wurde, ist in Abbildung 5-1 dargelegt. Bei dieser Anordnung werden die Lasten in den vorderen Querleinen des LNG-Tankers auf die äußeren Vertäudalben verteilt und die Lasten in den Leinen der FSRU verringert. Die verbesserte Vertäuanordnung für den LNG-Tanker mit 138.000 m³-Membrantank wird ebenso in Abbildung 5-2 dargestellt.

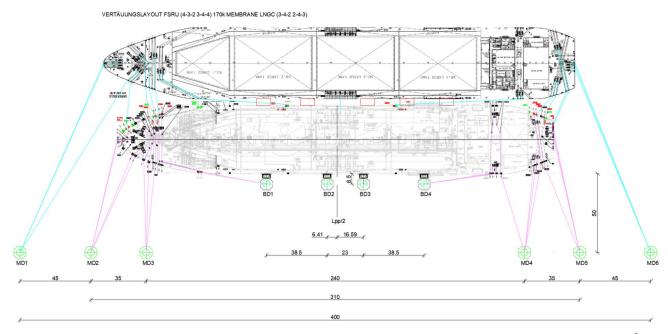


Abbildung 5-1 Verbesserte Vertäuanordnung für den Schiff-zu-Schiff-Betrieb mit dem LNG-Tanker mit 170.000 m³Membrantank, Anhang G Dispositionszeichnung und vertäuanordnungen

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 45 von 169

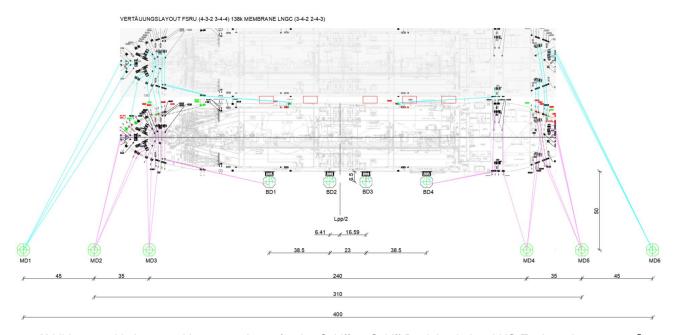


Abbildung 5-2 Verbesserte Vertäuanordnung für den Schiff-zu-Schiff-Betrieb mit dem LNG-Tanker mit 138.000 m³-Membrantank, Anhang G Dispositionszeichnung und vertäuanordnungen

Gestützt auf die Ergebnisse des ersten DMA-Simulationssatzes und den Abstand zwischen den Vertäuleinen und der FSRU wird die verbesserte Vertäuanordnung für den 177.000 m³-Moss-LNG-Tanker in Abbildung 5-3 dargelegt. Da der Moss-Tanker gegenüber der FSRU versetzt ist, kann nur eine Querleine an der MD1 angebracht werden.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 46 von 169

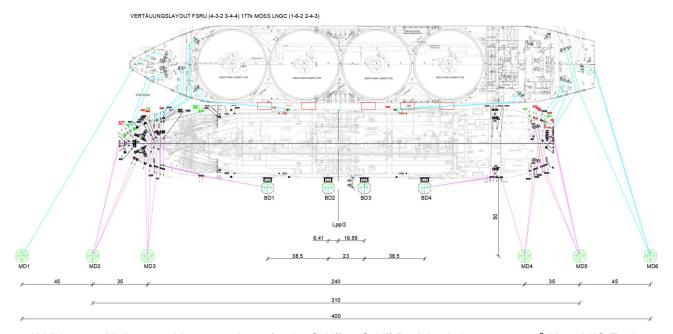


Abbildung 5-3 Verbesserte Vertäuanordnung für den Schiff-zu-Schiff-Betrieb mit dem 177.000 m³-Moss-LNG-Tanker, Anhang G Dispositionszeichnung und vertäuanordnungen

5.3 Grenzbedingungen für das sichere Verbleiben an der Anlegestelle

Anhang E Ergebnisse für den Schiff-zu-Schiff-Betrieb zeigt die metoceanen Grenzbedingungen und die Ergebnisse der DMA für die in Abschnitt 5.2 vorgestellten Vertäuanordnungen. Die Ergebnisse werden für die FSRU sowohl in beladenem Zustand als auch in Ballast mit dem LNG-Tanker mit 170.000 m³-Membrantank, dem LNG-Tanker mit 138.000 m³-Membrantank und dem LNG-Tanker mit 177.000 m³-Kugeltank (Moss) bei Wasserstand SKN und bei fünfjährlichem Hochwasserstand dargelegt.

Die Windgrenzgeschwindigkeiten wurden ausgehend von den Kriterien zur maximalen Leinenlast für jede Windrichtung extrahiert, Tabelle 5-1. Das Ergebnis ist das am stärksten einschränkende von allen Simulationen für jede Windrichtung, einschließlich von Wind zusammen mit Wellen und Wind mit Wellen und Strömungen.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 47 von 169

Tabelle 5-1 Für den Schiff-zu-Schiff-Betrieb extrahierte Umgebungsgrenzbedingungen

0	30										
07.00		60	90	120	150	180	210	240	270	300	330
27,22	22,64	17,98	20,95	17,94	16,78	21,63	24,17	26,36	25,96	26,81	27,83
enzgesc	hwindigkei	t basiere	nd auf de	n Kriterie	en zur ma	aximalen	Leinenla	st [m/s]			
0	30	60	90	120	150	180	210	240	270	300	330
>100JR											
18,38	>100JR*		>100JR		13,37	>10	0JR	18,47	14,74	>100JR	20,70
>100JR											
>100JR											
>100JR							20,36				
19,14					>100	JR					18,70
>100JR 19,99 >100JR						20,41					
					>100JR						19,80
>100JR 16,89 15,65 15,27 >100JR						19,53					
>100JR 16,75 16,20 14,65 >100JR							18,17				
>100JR 15,23 15,25 16,89 20,13							19,62				
		;	>100JR				18,39	17,56	17,82	>100JR	18,38
	18,38	0 30 18,38 >100JR*	0 30 60 18,38 >100JR* 19,14	0 30 60 90 18,38 >100JR* >100JR 19,14 >100JR >100JR >100JR >100JR >100JR >100JR >100JR	Herk 0 30 60 90 120 18,38 >100JR* >100JR 19,14	Herkunftsrich	Herkunftsrichtung aus	Name	0 30 60 90 120 150 180 210 240 >100JR 18,38 >100JR* >100JR 13,37 >100JR 18,47 >100JR 19,14 >100JR 19,99 >100JR 16,89 15,65 >100JR 16,75 16,20 >100JR 15,23 15,25 >100JR 18,39 17,56	Name	No So 60 90 120 150 180 210 240 270 300 240 270 300 240 270 300 240 270 300 240 270 300 240 270 300 240 270 300 240 270 300 270 300 270 300 270 300 270 300 270 300 270 300 270 300 270 300 270 300 270 300 270 2

^{*} In diesem Simulationssatz sind die Recker 11 m lang, wodurch das Vertäusystem steifer und wellenanfälliger wird. Der LNG-Tanker mit 138.000 m³-Membrantank ist gegenüber der simulierten Dünung empfindlicher als die anderen LNG-Tanker, was ein Szenario darstellt, in dem die Lasten selbst bei reduziertem Wind die Grenzkriterien überschreiten. Dieses Szenario entspricht jedoch den Strömungen und extremen Dünungswellen, die bei Wasserstand SKN auftreten, was eine konservative Annahme ist.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 48 von 169

5.4 Wahrscheinlichkeit einer Überschreitung der Umgebungsgrenzbedingungen

Anhand der in der DMA ermittelten Grenzbedingungen für den Schiff-zu-Schiff-Betrieb in Kombination mit den Zeitreihen metoceaner Daten lässt sich die zu erwartende Betriebsausfallzeit für den Schiffzu-Schiff-Betrieb schätzen.

Tabelle 5-2 enthält die für jede Windrichtung definierten Windgrenzgeschwindigkeiten in allen Szenarien, wie in Anhang E Ergebnisse für den Schiff-zu-Schiff-Betrieb untersucht. Nach der Herstellung eines Zusammenhangs zwischen dem Modell (NORA3) und den Messungen am Leuchtturm Alte Weser zeigt die Tabelle eine erste Abschätzung der Überschreitungswahrscheinlichkeiten für die verschiedenen Windgeschwindigkeitsgrenzen.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 49 von 169

Tabelle 5-2 Wahrscheinlichkeit einer Überschreitung der für den Schiff-zu-Schiff-Betrieb extrahierten Umgebungsgrenzbedingungen. Farbskala ab 0-10 % Ausfallzeit

		Hundertjährliche Winde [m/s]										
	0	30	60	90	120	150	180	210	240	270	300	330
	27,22	22,64	17,98	20,95	17,94	16,78	21,63	24,17	26,36	25,96	26,81	27,83
Stündliche Wir	ndgrenzge	schwindigl	ceit basie	rend auf d	den Kriter	ien zur ma	aximalen	Leinenlas	t [m/s]			
							tung aus					
Schiff, Ladezustand und Wasserstand	0	30	60	90	120	150	180	210	240	270	300	330
FSRU in Ballast + Membrantank 138 Tsd. beladen bei SKN		>100JR										
FSRU beladen + Membrantank 138 Tsd. in Ballast bei SKN	18,38	>100JR*		>100JR		13,37	>10	0JR	18,47	14,74	>100JR	20,70
FSRU in Ballast + Membrantank 138 Tsd. beladen bei HW		>100JR										
FSRU beladen + Membrantank 138 Tsd. in Ballast bei HW	>100JR											
FSRU in Ballast + Membrantank 170 Tsd. beladen bei SKN	>100JR							20,36				
FSRU beladen + Membrantank 170 Tsd. in Ballast bei SKN	19,14	19,14 >100JR							18,70			
FSRU in Ballast + Membrantank 170 Tsd. beladen bei HW				>100	JR				19,99	>10	00JR	20,41
FSRU beladen + Membrantank 170 Tsd. in Ballast bei HW						>100JR						19,80
FSRU in Ballast + Kugeltank (Moss) 177 Tsd. beladen bei SKN				>100JR				16,89	15,65	15,27	>100JR	19,53
FSRU beladen + Kugeltank (Moss) 177 Tsd. in Ballast bei SKN	>100JR 16,75 16,20 14,65 >100JR						18,17					
FSRU in Ballast + Kugeltank (Moss) 177 Tsd. beladen bei HW		>100JR 15,23 15,25 16,89 20,13						19,62				
FSRU beladen + Kugeltank (Moss) 177 Tsd. in Ballast bei HW				>100JR				18,39	17,56	17,82	>100JR	18,38
In discours Cimulation poor a find die Docker 11 m. lang wed was North western staffer and well another little are wird. Doc LNC Tonker mit 120 000 m3 Mambrantank ist								1.:-4				

^{*} In diesem Simulationssatz sind die Recker 11 m lang, wodurch das Vertäusystem steifer und wellenanfälliger wird. Der LNG-Tanker mit 138.000 m³-Membrantank ist gegenüber der simulierten Dünung empfindlicher als die anderen LNG-Tanker, was ein Szenario darstellt, in dem die Lasten selbst bei reduziertem Wind die Grenzkriterien überschreiten. Dieses Szenario entspricht jedoch den Strömungen und extremen Dünungswellen, die bei Wasserstand SKN auftreten, was eine konservative Annahme ist.

Überschreitungswahrscheinlichkeit im Durchschnittsjahr						
Schiff, Ladezustand und Wasserstand	Herkunftsrichtung aus (°N)					

IMDC TRACTEBEL Seconnect Received Excellerate Energy Umgebung
TES-Proj Nr.: TES-WHV-VGN FSRU Wilhelmshaven: Vertäustudie Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU Seite 50 von 169

	0	30	60	90	120	150	180	210	240	270	300	330
FSRU in Ballast + Membrantank 138 Tsd. beladen bei SKN	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %
FSRU beladen + Membrantank 138 Tsd. in Ballast bei SKN	0,01 %	0,00 %	0,00 %	0,00 %	0,00 %	0,02 %	0,00 %	0,00 %	0,02 %	0,43 %	0,00 %	0,01 %
FSRU in Ballast + Membrantank 138 Tsd. beladen bei HW	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %
FSRU beladen + Membrantank 138 Tsd. in Ballast bei HW	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %
FSRU in Ballast + Membrantank 170 Tsd. beladen bei SKN	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,01 %
FSRU beladen + Membrantank 170 Tsd. in Ballast bei SKN	0,01 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,03 %
FSRU in Ballast + Membrantank 170 Tsd. beladen bei HW	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,01 %	0,00 %	0,00 %	0,01 %
FSRU beladen + Membrantank 170 Tsd. in Ballast bei HW	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,02 %
FSRU in Ballast + Kugeltank (Moss) 177 Tsd. beladen bei SKN	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,04 %	0,17 %	0,28 %	0,00 %	0,02 %
FSRU beladen + Kugeltank (Moss) 177 Tsd. in Ballast bei SKN	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,04 %	0,08 %	0,43 %	0,00 %	0,03 %
FSRU in Ballast + Kugeltank (Moss) 177 Tsd. beladen bei HW	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,06 %	0,17 %	0,17 %	0,01 %	0,02 %
FSRU beladen + Kugeltank (Moss) 177 Tsd. in Ballast bei HW	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,00 %	0,01 %	0,04 %	0,08 %	0,00 %	0,03 %

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 51 von 169

5.5 Schlussfolgerungen

Ausgehend von der durchgeführten DMA ergeben sich folgende wesentlichen Schlussfolgerungen für den Schiff-zu-Schiff-Betrieb:

- Die verbesserte Vertäueinrichtung stellt sich für die verschiedenen LNG-Tanker wie folgt dar:
 - o FSRU (4-3-2-3-4-4) + LNG-Tanker mit Membrantank 138 Tsd. (3-4-2-2-4-3)
 - o FSRU (4-3-2-3-4-4) + LNG-Tanker mit Membrantank 170 Tsd. (3-4-2-2-4-3)
 - o FSRU (4-3-2-3-4-4) + LNG-Tanker mit Kugeltank (Moss) 177 Tsd. (1-6-2-2-4-3)
- Bezogen auf die Lasten im Vertäusystem bildet Wind die vorherrschende Kraft. In dieser Simulationsreihe sind die verwendeten Recker jedoch 11 m lang (in früheren Berichten waren es 22 m). Dies macht das Vertäusystem steifer und anfälliger für die auftreffenden Dünungswellen. Dadurch erhöhen sich unabhängig vom Wind die Leinenlasten. Strömungen wirken sich schwächer aus.
- Der LNG-Tanker mit 138.000 m³-Membrantank ist am anfälligsten für Dünungswellen, hauptsächlich bei Wasserstand SKN. Zusammen mit Strömungen und Winden aus 30° N überschreiten die Leinenlasten unabhängig von der Windgeschwindigkeit die Grenzkriterien etwas.
- Mit dem LNG-Tanker mit 138.000 m³-Membrantank hält das Vertäusystem hundertjährlichen metoceanen Bedingungen aus allen Windrichtungen stand, in Kombination mit Wellen und Strömungen in allen Szenarien, außer im folgenden: FSRU beladen und LNG-Tanker mit Membrantank 138 Tsd. in Ballast bei Wasserstand SKN. Zusammen mit Strömungen und Winden aus 30° N überschreiten die Leinenlasten in diesem Szenario unabhängig von der Windgeschwindigkeit die Grenzkriterien etwas. Das Vertäusystem hält in diesem Szenario hundertjährlichen Bedingungen für Winde aus 60–120° N und 180–210° N stand. Bezüglich der anderen Windrichtungen gilt:
 - aus 0° N begrenzt auf 18 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,01 % für ein durchschnittliches Jahr.
 - aus 150° N begrenzt auf 13 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,02 % für ein durchschnittliches Jahr.
 - aus 240° N begrenzt auf 18 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,02 % für ein durchschnittliches Jahr.
 - aus 270° N begrenzt auf 14 m/s (Wiederkehrintervall unter 1 Jahr) und Überschreitungswahrscheinlichkeit von 0,43 % für ein durchschnittliches Jahr.
 - aus 330° N begrenzt auf 20 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,01 % für ein durchschnittliches Jahr.
- Mit dem LNG-Tanker 170.000 m³-Membrantank hält das Vertäusystem hundertjährlichen Wiederkehrintervallbedingungen für Winde aus 30–210° N und 270–300° N stand, in Kombination mit Wellen und Strömungen. Bezüglich der anderen Windrichtungen gilt:
 - aus 0° N begrenzt auf 19 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,01 % für ein durchschnittliches Jahr.
 - aus 240° N begrenzt auf 20 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,01 % für ein durchschnittliches Jahr.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 52 von 169

- o aus 330° N begrenzt auf 18 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,03 % für ein durchschnittliches Jahr.
- Mit dem LNG-Tanker mit 177.000 m³-Kugeltank (Moss) hält das Vertäusystem hundertjährlichen Wiederkehrintervallbedingungen für Winde aus 0–180° N stand, in Kombination mit Wellen und Strömungen. Bezüglich der anderen Windrichtungen gilt:
 - aus 210° N begrenzt auf 15 m/s (Wiederkehrintervall unter 1 Jahr) und
 Überschreitungswahrscheinlichkeit von 0,06 % für ein durchschnittliches Jahr.
 - aus 240° N begrenzt auf 15 m/s (Wiederkehrintervall unter 1 Jahr) und Überschreitungswahrscheinlichkeit von 0,17 % für ein durchschnittliches Jahr.
 - aus 270° N begrenzt auf 14 m/s (Wiederkehrintervall unter 1 Jahr) und Überschreitungswahrscheinlichkeit von 0,43 % für ein durchschnittliches Jahr.
 - aus 300° N begrenzt auf 20 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,01 % für ein durchschnittliches Jahr.
 - o aus 330° N begrenzt auf 18 m/s (Wiederkehrintervall zwischen 1 und 2 Jahren) und Überschreitungswahrscheinlichkeit von 0,03 % für ein durchschnittliches Jahr.
- Mit Bewegungen sind sowohl die absoluten Bewegungen der Hochdrucksammelleitung in Bezug auf die Anfangsposition gemeint als auch die relativen Spitze-Spitze-Bewegungen von Schlauchanschlussstationen während des Schiff-zu-Schiff-Betriebs. Im Hinblick auf die Hochdrucksammelleitung liegen alle Simulationsbewegungen innerhalb des ermittelten maximalen Betriebsbereichs von 3 m. Die ermittelte maximale betriebsinduzierte Schnellbewegung der Hochdrucksammelleitung beträgt 1,25 m, und ihr maximaler betriebsinduzierter Versatz beträgt 0,98 m. Im Hinblick auf die relativen Schiff-zu-Schiff-Bewegungen liegen alle Simulationsbewegungen innerhalb des ermittelten Betriebsbereichs von 2 m Schnellen und 1 m Versetzen. Die ermittelte maximale betriebsinduzierte Schnellbewegung beträgt 1,68 m, und der maximale betriebsinduzierte relative Versatz beträgt 0,91 m.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 53 von 169

6 Auswahl der QRHs und der Fender

6.1 Gesetze und Normen

Sofern nichts anderes angegeben ist, müssen alle Arbeiten nach der neuesten Version der relevanten Normen durchgeführt werden. Soweit Bestimmungen von Nationalen Anhängen auf die europäischen Normen anwendbar sind, müssen die deutschen Nationalen Anhänge verwendet werden.

Referenz	Titel Beschreibung			
OCIMF - MEG4	Mooring Equipment Guidelines, Vierte Ausgabe (2018)			
EAU	Empfehlungen des Arbeitsausschusses "Ufereinfassungen" (2020)			
BS 6349-1-4:2013	Maritime works – Teil 1–4: General - Code of practice for materials (2013)			
BS6349: Part 4	Code of Practice for Design of Fendering and Mooring Systems (2014)			
PIANC	Guidelines for the Design of Fender Systems (2002)			
EAU	Empfehlungen des Arbeitsausschusses "Ufereinfassungen" (2020)			
BS 903	Physical testing of Rubber			

6.2 Spezifikation der QRH-Einheit

6.2.1 Auslegungslebensdauer und Strapazierfähigkeit

Alle Komponenten der QRH-Einheit, einschließlich der Befestigungen und Schutzbeschichtung, müssen so bemessen sein, dass sie unter den am Projektstandort herrschenden Umgebungsverhältnissen eine Auslegungslebensdauer von mindestens 50 Jahren erreichen, wobei der Zeitraum bis zur ersten Wartung 15 Jahre betragen muss.

6.2.2 Anordnung der Anlegestelle

Die Vertäuanordnung besteht aus 6 Vertäudalben und 4 Anlegedalben. Die Höhe jeder Dalbenplattform beträgt +11,6 m SKN. Die MDs sind jeweils mit Vierfach-QRH ausgestattet. BD1 und BD4 mit Dreifach-QRH. Die Vertäueinrichtung für einen LNG-Tanker mit Membrantank im Schiff-zu-Schiff-Betrieb ist in Abbildung 6-1 dargelegt.

Tabelle 6-1: Überblick über die QRH

Anlegedalben BD1 und BD4 (2x)	Vertäudalben MD 1, 2, 3, 4, 5 und 6 (6x)		
Dreifach-Quick Release Hook-Anordnung (TQRH) mit 150 Tonnen SWL	Vierfach-Quick Release Hook-Anordnung (QQRH) mit 150 Tonnen SWL		

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie		
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06		
TES-Code: TES-WHV-VGN-FSRU		Seite 54 von 169		

Anlegedalben BD1 und BD4 (2x)	Vertäudalben MD 1, 2, 3, 4, 5 und 6 (6x)
(nur zwei äußere Anlegedalben)	(an jeder Vertäudalbe)

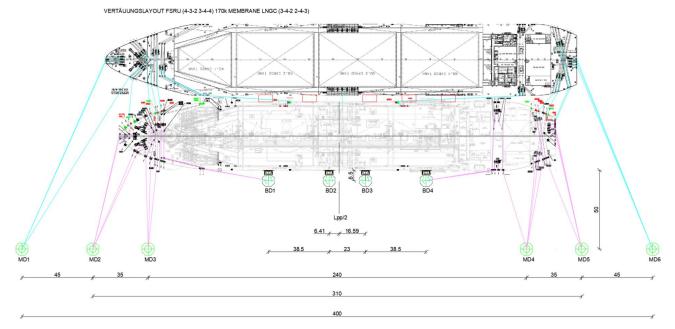


Abbildung 6-1 Vertäueinrichtung LNG-Tanker mit Membrantank im Schiff-zu-Schiff-Betrieb, Anhang G Dispositionszeichnung und vertäuanordnungen

6.2.3 Quick Release Hook-Anordnungen

Der QRH muss dazu geeignet sein, Vertäuleinen aus Stahl von bis zu 42 mm mit Nylon-Reckern von 94 mm aufzunehmen.

Nach der Bemessungsphilosophie, wie sie im British Standard oder durch das OCIMF oder die PIANC beschrieben wird, sollte die Vertäuleine das schwächste Glied im Vertäusystem sein – und nicht der QRH. FSRU mit ähnlichen Größen könnten Leinen mit einer Mindestbruchkraft von bis zu MBL = 125 t an Bord haben, und die LNG-Tanker könnten Leinen mit bis zu MBL = 150 t an Bord haben. Die einzelnen Haken müssen daher eine Kapazität SWL > 150 t aufweisen.

Die QRH-Anordnungen müssen frei schwenkbar sein, um horizontale und vertikale Arbeitsbereiche zum Vertäuen zu ermöglichen. Dabei gelten folgende Reichweiten:

- Horizontale Reichweite 90 Grad zu allen Seiten
- Vertikale Reichweite 45 Grad nach oben und 10 Grad nach unten

Beim Schwenken oder Entriegeln müssen die Haken den Kontakt von Metall auf Metall vermeiden (funkenfrei) und über die Pfähle der Dalbenbauten geerdet sein.

Die QRH-Anordnungen müssen mit einer fest eingebauten Verholwinde bereitgestellt werden. Die QRH-Anordnungen müssen so beschaffen sein, dass der Austausch von Teilen bei jedem Haken möglich ist.

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 55 von 169

6.2.4 Entriegelungssysteme

Das Entriegeln der QRH muss sowohl bei voll zugbeanspruchten als auch bei schlaffen Drähte möglich sein.

Jeder QRH muss manuell bedienbar sein und unter der Bemessungslast des Hakens mit einem manuellen Aufwand von höchstens 20 kg betriebsfähig sein. Jeder Haken muss unabhängig von den anderen Haken der Einheit einzeln entriegelt werden können.

Die QRH-Anordnungen müssen mit einem manuellen Entriegelungsmechanismus bereitgestellt werden, der eine Verriegelung beinhaltet, durch die ein versehentliches Entriegeln verhindert wird. Die Haken müssen über ein Kontergewicht verfügen, um das manuelle Zurücksetzen in die verriegelte Position durch eine Person zu ermöglichen. Jeder Haken muss vor dem Befestigen der Vertäuleine von einer Person in Position gebracht werden können.

Die QRH-Anordnungen müssen auch mit einem lokalen elektrischen Entriegelungssystem ausgestattet sein, über das die Haken von fern entriegelt werden können. Das System kann über einzelne Freigabedrucktasten bedient werden, die auf der Abdeckung des lokalen Schaltkastens angebracht sind. Zur Vermeidung von mechanischen Beschädigungen durch die Hakenbewegungen wird der elektrische Freigabeantrieb in die Stütze der Verholwinde integriert sein. Das System wird mit mehreren Funktionen ausgestattet sein, darunter:

- ein elektrischer Freigabeantrieb für jeden Haken;
- ein Näherungsschalter zum Erkennen der Hakenposition (offen/geschlossen);
- ein Freigabeseil aus Edelstahl.

Die Quick Release Hooks können von einer Fernsteuereinrichtung aus freigegeben werden, die sich im Frachtkontrollraum der FSRU befindet. Aus Sicherheitsgründen wird es nicht möglich sein, mehrere Haken gleichzeitig freizugeben.

Abbildung 6-2 Beispiel für einen Quick Release Hook (Quelle: Straatman)

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 56 von 169

6.2.5 Verholwinde

Die QRH werden integrierte Verholwinden haben. Die Verholwinde ermöglicht das sichere und effiziente Einholen der Vertäuleine. Die Verholwinden werden mit mehreren Funktionen ausgestattet sein, darunter:

- Bremsmotor mit Rechts-/Linkslauf;
- Schaltkasten mit Steuereinrichtung;
- Motoranlasser;
- Fußpedal zur Bedienung der Verholwinde;
- Not-Aus-Tasten.

Die Verholwinde muss elektrisch angetrieben sein. Die Verholwinden müssen über eine Zugkraft von 10 kN bei einer Zuggeschwindigkeit von 30 m/min verfügen und eine maximale Zugkraft von 20 kN besitzen. Sie müssen so bemessen sein, dass der Motor leicht ausgetauscht werden kann. Die Verholwinden müssen mit einem Fußpedal zu ihrer Bedienung und Steuerung ausgestattet sein. Der Verholwindenmotor muss gegen thermische Überlastung geschützt sein. Die Verholwindenmotoren müssen Lasten halten können, wenn sie angehalten werden. Die Motoren müssen für Mehrfachstarts geeignet sein.

Die Verholwindenmotoren müssen mit einer Vorrichtung ausgestattet sein, die eine Drehung der Verholwinde in die entgegengesetzte Richtung bei einem Stromausfall verhindert.

Alle beweglichen Teile der Quick Release Hooks und Verholwinden müssen geschmiert werden. Die Verholwinden müssen für mindestens 3.000 Stunden effektiven Betrieb geschmiert sein.

Es werden jeweils maximal zwei Verholwinden gleichzeitig betrieben.

Abbildung 6-3 QRH mit integrierter Verholwinde

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 57 von 169

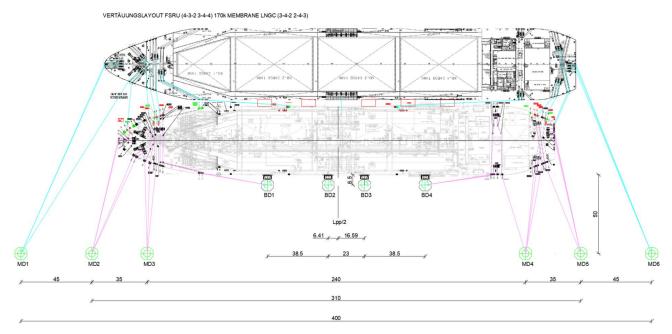
6.2.6 Lastüberwachungssystem für die Vertäuleine

Zur kontinuierlichen Messung der Last in jedem Haken werden die Quick Release Hooks mit Wägezellen ausgestattet sein. Die Lasten in den Vertäuleinen und die entsprechenden Alarme können auf verschiedene Weise eingesehen und aufgezeichnet werden. Das Überwachungssystem für die Lasten in den Vertäuleinen kann auch in ein Anlegehilfesystem integriert werden. Alle Daten werden in einem einzigen System überwacht, angezeigt und aufgezeichnet, das im Überwachungsraum des Frachtkontrollraums der FSRU verfügbar sein wird.

Das Basissystem zur Überwachung der Lasten in den Vertäuleinen besteht aus mit Dehnungsmessstreifen versehenen Lastbolzen, die speziell auf die Abmessungen des horizontalen Schwenkzapfens des Hakens zugeschnitten sind.

- Diese Lastbolzen liefern ein 4–20 mA-Signal proportional zu der Last, die auf den Haken angewendet wird. Die SPS-Signale werden über ein Ethernet-Schleifenkabel mittels einer im Kontrollraum installierten DSL-Einheit gesammelt.
- Die induzierten Lasten werden dabei über SCADA-Visualisierungssoftware, die auf einem (Desktop-)Computer installiert ist, kontinuierlich in Echtzeit angezeigt. Diese Anwendungssoftware ist menügesteuert, um die Prozessvisualisierung (HMI) zu erleichtern.
- Die SPS-Stromversorgung und die Erregerspannungen der Lastbolzen werden innerhalb des lokalen Schaltkastens der Vertäueinheit von der Hauptstromversorgung erzeugt.

6.3 Fenderspezifikationen


6.3.1 Auslegungslebensdauer und Strapazierfähigkeit

Alle Komponenten der Fendereinheit, einschließlich von Gummi, Ketten, Befestigungen und Schutzbeschichtung, müssen so bemessen sein, dass sie unter den am Projektstandort herrschenden Umgebungsverhältnissen eine Bemessungslebensdauer von mindestens 50 Jahren erreichen, wobei der Zeitraum bis zur ersten Wartung 15 Jahre betragen muss.

6.3.2 Anordnung der Anlegestelle, Schiffsdaten und Fenderungsbedarf

Die Vertäuanordnung besteht aus 6 Vertäudalben und 4 Anlegedalben. Die Höhe jeder Dalbenplattform beträgt +11,6 m SKN. Jede Anlegedalbe ist mit einer einzelnen Fendereinheit samt Verkleidung ausgestattet. Die Höhe jeder Fendermitte beträgt +7,0 m SKN. Die Vertäueinrichtung für einen LNG-Tanker mit Membrantank im Schiff-zu-Schiff-Betrieb ist in Abbildung 6-1 dargelegt.

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 58 von 169

6Abbildung -4 Vertäueinrichtung LNG-Tanker mit Membrantank im Schiff-zu-Schiff-Betrieb, Anhang G Dispositionszeichnung und vertäuanordnungen

Das Anlegen für ein Schiff mit 177.000 m³ (Membran & kugelförmig) wurde nach BS.6349 berechnet [IV]. Die zentralen Typenangaben sind in aufgeführt.

Tabelle 6-2 Wesentliche Merkmale LNG-Tanker (Membran & kugelförmig)

Parameter	Einh	eit		
Тур			Membran & kugelförmig	
Kapazität	m³		177.200	
Länge über alles	Lüa	m	299,9	
Länge zwischen den Loten	Lpp m		286	
Breite	B m		48,9	
Seitenhöhe bis Hauptdeck	D m		27	
Ladezustand in der Studie			in Ballast	beladen
Maximaler Tiefgang	Т	m	9,50	11,80
Verdrängung	Δ	t	92.507	120.000

Der in der Studie zur Anlegeenergie berücksichtigte Tiefgang beträgt beladen 11,80 m.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 59 von 169

Für das Bemessungsschiff ist gemäß EAU-Empfehlungen (2020) ein Anfahrwinkel von 6° anzunehmen. Dies sind charakteristische Bemessungsverhältnisse. Als Geschwindigkeit sind 0,15 m/s anzunehmen.

Es sind sowohl Liegeplatzverschiebungen bezogen auf den Standort der auf dem Schiff angeordneten Schlauchanschlussstation (bei Membran- und Kugeltanks) als auch während des Manövrierens $(0,1 \times L\ddot{u}a)$ < 15 m) zu berücksichtigen. Als durchschnittliche Umgebungstemperatur werden 33 °C angenommen. Als durchschnittliche minimale Umgebungstemperatur werden -15 °C angenommen. (Technip Energies 2022). BS 6349 zufolge beträgt der Sicherheitsfaktor zwischen der charakteristischen und der bemessenen Anlegeenergie gemäß Planung 2,0.

Das Bemessungsschiff, auf das die (dynamische) Vertäustudie sich bezieht, ist die FSRU Excelsior (138.000 m³) von Excelerate. Die zentralen Typenangaben sind in Tabelle 6-3 aufgeführt. Der zu berücksichtigende maximale Tiefgang beträgt 12,32 m.

Tabelle 6-3 FSRU – zentrale Typenangaben

Parameter	Einheit		Excelsior	
Тур			FSRU	
Kapazität	m³		138.058,90	
Länge über alles	Lüa	m	277,00	
Länge zwischen den Loten	Lpp	m	266,00	
Breite	В	m	m 43,40	
Seitenhöhe bis Hauptdeck	D m		26,00	
Ladezustand in der Studie			in Ballast beladen (maximaler Tiefgan	
Maximaler Tiefgang	Т	m	9,18	12,32
Verdrängung	Δ	t	78.165	108.832

Den Ergebnissen aus der DMA zufolge gilt als maximale Anlehnlast 3600 kN. Es könnten zudem zyklische Lasten auf die Fender infolge von Dünungswellen auftreten, die auf die FSRU und/oder den LNG-Tanker einwirken. Diese zyklischen Lasten können Zykluszeiten von bis zu 12 s mit mittleren Lastzyklen von 1350 kN haben. Dieses Ergebnis wird nicht bewertet und es wird nicht bezogen auf eine Durchbiegung des Dalbenpfahls berücksichtigt. Die Pfahlkonstruktion wird als steif angenommen.

Die Fender müssen diesen zyklischen Lasten während ihrer Auslegungslebensdauer standhalten können.

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 60 von 169

6.3.3 Fenderverkleidung

Die Fender müssen mit einer Verkleidung versehen sein. Die Verkleidung ist so zu bemessen, dass der durchschnittliche Anpressdruck des Schiffsrumpfs bei der Nennreaktionskraft (einschließlich Herstellertoleranz) auf 140 kPa begrenzt wird.

Die Fenderverkleidung muss über Platten aus UHMW-PE ausreichender Dicke verfügen, damit die erforderliche Auslegungslebensdauer erreicht wird. Die letztliche Farbe der Platten ist mit dem Auftragnehmer und dem Hersteller abzustimmen. Die Fenderverkleidung muss für einen möglichst geringen erforderlichen Wartungsaufwand versiegelt sein. Sie ist so zu positionieren, dass die Schiffsgesamtabmessungen in allen Gezeitenphasen geschützt sind.

Sie muss so in Ketten angeordnet sein, dass ihr Eigengewicht wie auch die Reibungslast auf die Struktur übertragen wird. Diese Reibungslast ist in jede Richtung mit 25 % der maximalen Nennreaktionskraft der Fender (einschließlich Herstellertoleranz) anzusetzen.

6.3.4 Anlegeenergie und Fenderauswahl

Die Anlegeenergie wurde über die in den vorangegangenen Abschnitten genannten Anforderungen ermittelt. Die Berechnungstabellen sind als Anhang F beigefügt. Die Berechnungen beruhen auf BS.6349 [IV] und EAU (2020). Das Ergebnis für die maximale Anlegeenergie je einzelnen Dalben lautet wie folgt:

Charakteristische Anlegeenergie (E_c): 2.000 kNm
 Bemessene Anlegeenergie (E_d): 4.000 kNm

Vor dem Hintergrund des obigen und der maximalen Anlehnlast wurden die folgenden Fender ausgewählt:

- SCN 2250 F1.4 (E_R 4,964 kNm und R_R 3,708 kN); Fenderdurchmesser 3,285 mm
- CSS 3000 G1.4 (E_R 4,968 kNm und R_R 3,762 kN); Fenderdurchmesser 3,350 mm

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 61 von 169

7 Bemessungslasten bei vertäuten Schiffen

Die OCIMF-Leitlinien MEG4 [3] enthalten Informationen über die Wechselwirkung zwischen dem Schiff und dem landseitigen Vertäuungspunkt.

Ships							L	ines
Ship Mooring System Component	Double Bollard, Closed Chock, Pedestal Fairlead	Single Bollard, Recessed Bitt	Winch Foundation	Winch Drum, Shafts, Bearings	Winch Brake	Mooring Line Type/ Component	Wire	Synthetic
Operational brake render					60	Shackle SWL (synthetic)		
Max design brake render (ISO-Holding load)					80	Shackle SWL (wire)		
Safe Working Load (SWL)	100	100	100	100	100	Working Load Limit (WLL)	55	50
Ship design MBL	100	100	100	100	100	Ship design MBL	100	100
Max rated pull				33		Replace	75	75
Design Basis Load (DBL)	200	100	100	100	100	Line Design Break Force (LDBF)	100	100
Specified Minimum Yield Stress (SMYS)	250	125	118	111	118	LDBF (Max)	105	105

		Shore/Terminal		
Shore Mooring Point Type	Single Hook/Bollard	2 Hook Mooring Point	3 Hook Mooring Point	4 Hook Mooring Point
EU - Mooring structure SWL, extreme loads benign locn	100	120	180	240
EU - Mooring structure SWL, extreme loads exposed locn	100	150	230	310
EU - Mooring structure SWL, accidental load condition	118	210	280	350
Max ship design MBL	100	100	100	100
US - Mooring structure SWL	118	160	220	280
Hooks	1	2	3	4

Abbildung 7-1 OCIMF-MEG4, Wechselwirkung zwischen dem Schiff und dem landseitigen Vertäuungspunkt. Alle Werte sind Prozentangaben der minimalen Bemessungsbruchlast (MBL) des Schiffs

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 62 von 169

Betriebsbedingungen:

Tabelle 7-1 zeigt die Ergebnisse aus der DMA in Bezug auf die Vertäuungspunkte an den Vertäudalben (MDs) und Anlegedalben (BDs). Sie gelten unter der Bedingung, dass die FSRU alleine liegt.

Die Grenzbedingung in der DMA für die Leinenlasten lautet 55 % MBL. Überschreiten die Leinenlasten tendenziell 55 % der MBL, muss die FSRU die Anlegestelle verlassen. Die 55 % sind gestützt auf die Tatsache, dass bei den Schiffswinden ab 60 % MBL Schlupf auftritt. Beispiel: $4 \times 55 \% \times 124 t = 2676 \text{ kN}$. Die FSRU hat die Anlegestelle unter den rot hervorgehobenen Bedingungen verlassen.

Daher wird in den OCIMF-MEG4 n x 60 % x MBL als extreme Betriebslast an einem Vertäuungspunkt spezifiziert. Dies wird als charakteristische Last am Vertäuungspunkt herangezogen.

Außergewöhnliche Bedingungen:

Die außergewöhnlichen Ladebedingungen basieren auf Fehlfunktionen der Vorrichtungen an Bord des Schiffs. Da die Vorrichtungen normalerweise eine größere Festigkeit aufweisen als die erforderliche Mindestfestigkeit, wurde ein Zusatzfaktor von 1,18 angenommen.

EAU 2020 – Abschnitt 4.9.1:

330N

In den EAU sind zwar keine spezifischen Empfehlungen für QRH enthalten, für Poller jedoch schon. Der Ansatz für Poller ähnelt mehr oder weniger dem, was weiter oben zur Berücksichtigung von extremen Betriebslasten für QRH in ständigen Bemessungssituationen und außergewöhnliche Lasten in außergewöhnlichen Bemessungssituationen dargelegt wird.

Maximale QRH-Lasten [kN] TR BD1 BD2 BD3 BD4 MD4 MD5 MD1 MD2 MD3 MD6 0 N 30 N 60 N 90 N 120 N 150 N 180 N 210 N 100 240 N 270 N 100 300 N

Tabelle 7-1 Aus der DMA für jede Windrichtung entnommene maximale QRH-Lasten

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 63 von 169

7.1 Lasten an den Vertäudalben

Lasten an den Vertäuungspunkten

Die Lasten an den Vertäuungspunkten basieren auf den Vorrichtungen, die auf dem Schiff vorhanden sind (Winden, Leinen). Für die QRH-Lasten wurde der Ansatz aus den OCIMF-MEG4 in Betracht gezogen, ähnlich dem, was in den EAU 2020 für Pollerlasten herangezogen wird. Die Berechnungen in Bezug auf die Vertäudalben wurden auch für zukünftige Schiffe und den LNG-Tanker im Schiff-zu-Schiff-Betrieb mit 150 t-Leinen überprüft. Die Vertäuanordnungen in diesen Fällen umfassen jedoch maximal drei 150 t-Leinen an den MDs. Daher führen die vier 124 t-Leinen an den MDs bei allein liegender FSRU zu konservativeren Werten, vgl. Abschnitt 3.4.3.

Die gewählten Lasten am Vertäuungspunkt für die Vertäudalben werden nachstehend dargelegt.

Charakteristische Last:

- $-4 \times 60 \% \times MBL =$
- $-4 \times 60 \% \times 124 t = 2920 kN$

Last für außergewöhnliche Bemessungssituation:

- $1,18 \times (1 \times 60 \% \times MBL + 3 \times 80 \% \times MBL) =$
- $1,18 \times (1 \times 60 \% \times 124 \text{ t} + 3 \times 80 \% \times 124 \text{ t}) = 4307 \text{ kN}$

Alle Vertäudalben weisen die gleichen Lasten auf:

- F_{Vertäuungspunkt, char} = 2920 kN
- $F_{Vertäuungspunkt, Bemessung} = \gamma_F \times 2920 \text{ kN}$
- Fvertäuungspunkt, außergew = 4307 kN

Die Winkel der QRH sind meist physikalisch bedingt auf 45° begrenzt, mit Ausnahme der äußeren Haken, die bis zu 90° gehen können. Die Leinen überschreiten jedoch normalerweise nicht +25° und -5°, vgl. Abbildung 7-2.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 64 von 169

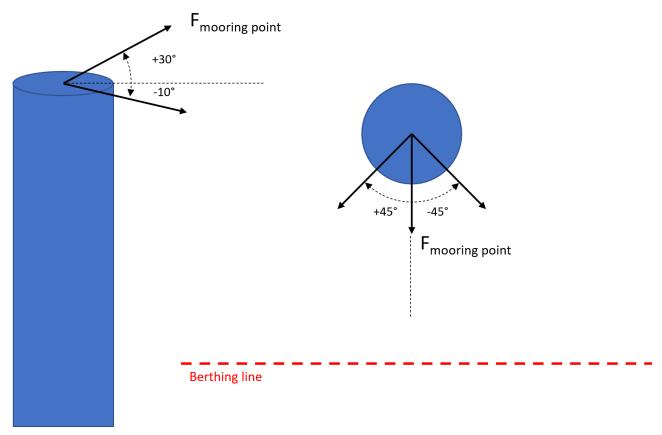


Abbildung 7-2 Lasten an den Vertäudalben

7.2 Lasten an den Anlegedalben

Lasten an den Vertäuungspunkten

Die Berechnungen der Lasten an den Vertäuungspunkten der Anlegedalben (BD) wurden auch für zukünftige Schiffe und den LNG-Tanker im Schiff-zu-Schiff-Betrieb mit 150 t-Leinen überprüft. Die Vertäuanordnungen in diesen Fällen umfassen jedoch maximal zwei 150 t-Leinen an den BDs. Daher führen die drei 124 t-Leinen an den BDs bei allein liegender FSRU zu konservativeren Werten, vgl. Abschnitt 3.4.3.

Die gewählten Lasten am Vertäuungspunkt für die Anlegedalben BD1 und BD4 werden nachstehend dargelegt.

Charakteristische Last:

- $-3 \times 60 \% \times MBL =$
- 3 × 60 % × 124 t = 2190 kN

Last für außergewöhnliche Bemessungssituation:

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 65 von 169

- $1,18 \times (3 \times 80 \% \times MBL) =$

- $1,18 \times (3 \times 80 \% \times 124 t) = 3445 kN$

Die Anlegedalben BD1 und BD4 weisen die gleichen Lasten auf:

- F_{Vertäuungspunkt, char} = 2190 kN

- F_{Vertäuungspunkt, Bemessung} = γ_F × 2190 kN

- F_{Vertäuungspunkt, außergew} = 3445 kN

Fenderlasten

Alle Anlegedalben weisen zudem Fenderlasten auf. Die bemessene Anlegeenergie, die in Abschnitt 6.3.4 angegeben ist, beträgt 4000 kNm. Die gewählte Fenderlast basiert auf der oberen Begrenzung der Fenderwahl SCN 2500 F1.1, mit einer Nennreaktionskraft von 4028 kN und einer Nennenergieaufnahme von 6172 kNm.

Charakteristische Reaktionslast:

- $F_{Reaktion, max} = R_{CV} \times 1,1 \text{ TOL} \times 1,0 \text{ AF} \times 1,1 \text{ VF} \times 1,05 \text{ TF} =$

- $F_{Reaktion, max} = 4028 \text{ kN} \times 1,1 \times 1,0 \times 1,1 \times 1,05 = 5200 \text{ kN}$

Charakteristische Reibungslast:

F_{Reibung, seitlich/vertikal} = 20 % x F_{Reaktion, max} = 20 % x 5200 kN = 1050 kN

Alle Anlegedalben weisen die gleichen Lasten auf:

- $F_{Reaktion, char} = 5200 kN$

- F_{Reibung, seitlich/vertikal, char} = 1050 kN

- $F_{Reaktion, bemessen}$ = $\gamma_F \times 5200 \text{ kN}$

- $F_{Reibung, seitlich/vertikal, bemessen} = \gamma_F \times 1050 \text{ kN}$

Anlehnlasten

Die DMA-Ergebnisse zeigen, dass die maximalen Anlehn-Reaktionslasten und die maximalen Leinenlasten nicht übereinstimmen, *Tabelle 7-3* und *Tabelle 7-4*.

Dies erscheint jedoch optimistisch, da auch zwischen den Maximal- und Minimalwerten maßgebliche Fälle liegen könnten. Daher wird bei der Pfahlbemessung die maximale Reaktionslast des Fenders (5200 kN) als Anlehnlast angenommen, kombiniert mit der Betriebsgrenze für die Lasten in den Vertäuleinen (3 × 60 % × MBL).

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 66 von 169

Tabelle 7-2 Aus der DMA für jede Windrichtung entnommene maximale QRH-Lasten

		Maximale Fenderlasten [kN]			
	TR	BD1	BD2	BD3	BD4
0 N	100	3548,3	2945,4	2661,1	2609,8
30 N	100	3248,4	2788,6	2601,5	2812,4
60 N	100	2737,4	2247,3	2168,1	2701,8
90 N	100	2417,3	2213,9	2369,4	3078,1
120 N	100	2119,1	1830,8	1848,9	2313,8
150 N	100	2039,1	1624,5	1684,3	2124,3
180 N	100	1791,8	1216,7	1485,6	2321,3
210 N	20	2220,8	1575,7	1348,4	2043,6
240 N	10	2129,3	1574,2	1479,6	2062,3
270 N	20	1993,5	1559,6	1520	2238,6
300 N	100	2039,6	1580,6	1746,9	2539,8
330 N	100	2648,2	1920,3	1686,8	2060,4

Tabelle 7-3 Aus der DMA für jede Windrichtung entnommene maximale QRH-Lasten

	or or action that jour vinationality of the maximum quarter						
				Zugeh	iörige F	enderla	st [kN]
	ollerlast N]	TR	Windrichtg	BD1	BD2	BD3	BD4
MD1	0						
MD2	2321	20	270 N	0	0	0	0
MD3	1704	10	240 N	0	0	0	0
BD1	870	100	180 N	0	0	0	0
BD2	0						
BD3	0						
BD4	1518	100	300 N	0	0	0	0
MD4	2220	20	210 N	0	0	0	0
MD5	2146	20	210 N	0	0	0	0
MD6	0						

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 67 von 169

Tabelle 7-4 Aus der DMA für jede Windrichtung entnommene maximale QRH-Lasten

				Zugehörige Pollerlast [kN]									
Fend	ax. erlast N]	TR	Windrichtg	MD1	MD2	MD3	BD1	BD2	BD3	BD4	MD4	MD5	MD6
BD1	3548	100	0N	0	0	0	0	0	0	561,5	674,63	565,79	0
BD2	2945	100	0N	0	0	0	0	0	0	481,75	513,63	463,21	0
BD3	2661	100	0N	0	241,5	106,11	32,069	0	0	370,69	200,05	141,46	0
BD4	3078	100	90N	0	718,36	584,5	389,28	0	0	0	19,322	6,7821	0

Charakteristische Reaktionslast:

 $F_{Anlehn-, max} = 3600 \text{ kN (aus DMA)} < F_{Reaktion, max} = 5200 \text{ kN}$

Die maximale Reaktionslast wirkt senkrecht zur Anlegeleine. Allerdings können während der Schiffsbewegungen, die die maximale Reaktionskraft verursachen, auch Bewegungen des Schiffs parallel zur Anlegeleine auftreten. Diese Parallelbewegungen aktivieren die Reibungskraft des Fenders oder der an der Anlegedalbe befestigten Spring. Als konservative Schätzung wurden die Betriebslasten in den Vertäuleinen für die Last parallel zur Anlegeleine angenommen (3 \times 60 % \times MBL).

Charakteristische Last am Vertäuungspunkt:

- $-3 \times 60 \% \times MBL =$
- $-3 \times 60 \% \times 124 t = 2190 kN$

Die Anlegedalben BD1 und BD4 weisen die gleichen Lasten auf:

F_{Reaktion, char} = 5200 kN
 F_{Vertäuungspunkt, char} = 2190 kN

- $F_{Reaktion, bemessen}$ = $\gamma_F \times 5200 \text{ kN}$

F_{Vertäuungspunkt, Bemessung} = γ_F × 2190 kN

8 Schlussfolgerungen und Empfehlungen

8.1 Schlussfolgerungen

Auf Grundlage der Ergebnisse aus der DMA wurden die folgenden zentralen Schlussfolgerungen gezogen:

Die endgültigen Vertäuanordnungen sind für die allein liegende FSRU in Abschnitt 4.3 und für die FSRU in Kombination mit LNG-Tanker in Abschnitt 5.2 dargestellt.

Position der Dalben:

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 68 von 169

- Die Bestimmung der Position der Dalben erfolgte gemäß den PIANC-Empfehlungen. Ausgehend von den PIANC-Empfehlungen sollte der Abstand zwischen den Fendern für alle Schiffstypen, die voraussichtlich im Laufe der Lebensdauer des Anlandeterminals an diesem anlegen, 0,25 bis 0,4 x Lüa betragen. Darin wird das Erfordernis berücksichtigt, dass die Fender vollständig an den flachen Seiten der Schiffe anliegen müssen.
- Der Abstand zwischen BD1 und BD2 musste aufgrund eines möglichen Zusammenstoßes mit den Steigrohren, die vom Meeresboden bis zur Galerie der FSRU reichen, vergrößert werden. Dadurch verringert sich der Abstand zwischen den inneren BDs (BD2 und BD3).
- Es gelten folgende Spezifikationen und Platzierungseigenschaften der Vertäu- und Anlegedalben:
 - Die MDs sind jeweils mit Vierfach-QRH ausgestattet und die äußeren BDs mit Dreifach-QRH.
 - Die Nutzlast-Kapazität der Haken beträgt SWL = 150 t.
 - Die QRH-Einheiten befinden sich an allen MDs 50 m hinter der Anlegeleine und an den BDs 8.5 m dahinter.
 - o Der Gesamtabstand zwischen den äußeren QRH-Einheiten beträgt 400 m.
 - Der Abstand zwischen den inneren BDs beträgt 23 m und zwischen den äußeren BDs 100 m.
 - Der Abstand zwischen mittschiffs, definiert in Längsrichtung bei halber Lpp (Länge zwischen den Loten), und BD2 beträgt 6,41 m.

Umgebungsdaten:

- Bei der DMA-Analyse wurden richtungsabhängige Extrembedingungen einbezogen. Es wurden gemessene historische Wind-, Wellen- und Wasserstandsdaten aus der näheren Umgebung sowie standortbezogene Daten untersucht, die durch numerische Modellierung von Wellen und Gezeitenströmungen gewonnen wurden.
- Zur Berücksichtigung der Landrauheit, insbesondere bei Wind aus West und Südwest, wurde die Analyse der Winddaten vom Standort Leuchtturm Alte Weser ausgehend von den Modelldaten auf den Projektstandort übertragen.
- Sensitivitätsanalyse. Vor der Untersuchung der Bemessungsbedingungen und der Grenzbedingungen für das sichere Verbleiben an der Anlegestelle wurde eine Sensitivitätsanalyse durchgeführt, siehe Anhang C Sensitivitätsanalyse. Die Vertäuanordnung wurde vor dem Hintergrund dieser Studie und der folgenden Überlegungen verbessert:
 - Meteorologisch-ozeanographische Bedingungen und Ladezustände:
 - Bei hundertjährlichen Sturmbedingungen sind die Leinenlasten höher, wenn das Schiff bei hohem Wasserstand in Ballast ist, als wenn es bei Niedrigwasser beladen ist. Dies ist auf den Wind als vorherrschende Kraft sowie auf ungünstige Leinenwinkel zurückzuführen.
 - Die Bewegungen fallen größer aus, wenn das Schiff bei Wasserstand SKN beladen ist, als wenn es bei hohem Wasserstand in Ballast ist. Denn hierbei baut sich eine größere Trägheit auf und kommt es zu größeren Amplituden.

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 69 von 169

Dies ist auf die veränderten Leinenlängen und -winkel beim Vergleich einer bei SKN beladenen FSRU mit einer bei hundertjährlichem Hochwasser FSRU in Ballast zurückzuführen (+10 m Unterschied), die sich auf die Funktionsfähigkeit der Leinen auswirken. Bei Wasserstand SKN und beladener FSRU kommt es zu erheblichen Auswirkungen von Strömungen auf die Bewegungen.

- Vertäuleinen: Die Simulationen wurden sowohl mit 11-m- als auch mit 22-m-Reckern durchgeführt. Die 22-m-Recker erwiesen sich zum Reduzieren der Leinenlasten als besser geeignet. Die Kriterien für Bewegungen im Schiff-zu-Schiff-Betrieb sind stärker einschränkend. Die 11-m-Recker bewirken eine höhere Steifigkeit des Vertäusystems, was es empfindlicher gegenüber Wellen macht, die Lasten erhöht und die Bewegungen verringert. Die kürzeren Recker sind gemäß der Analyse die bevorzugte Lösung zum Verbessern der Grenzbedingungen.
- Die Analyse umfasste verschiedene Vertäuanordnungen und weitere Leinen: Es wurden fünf verschiedene Vertäuanordnungen geprüft, einschließlich von Variationen bei der Anzahl der Vertäudalben (d. h. sechs und vier MDs) und von Zusatzleinen (zunächst 18 Leinen und am Ende 20 Leinen).

Grenzbedingungen:

- Bei der FSRU in Ballast kommt es aufgrund des Windeinflusses zu engeren metoceanen Bedingungen als bei der beladenen FSRU. Bei Wasserstand SKN sind die Auswirkungen von Dünungswellen stärker, was die Bedingungen verschärft. Beim Schiff-zu-Schiff-Betrieb mit beladener FSRU und LNG-Tanker in Ballast kommt es im Allgemeinen zu engeren, wenngleich von den Windrichtungen abhängigen metoceanen Bedingungen.
- o In allen bewerteten kritischen Fällen überschreiten die Vertäuleinen ihr Belastungskriterium, bevor andere Komponenten des Vertäusystems versagen.
- Basierend auf der DMA wird geschlussfolgert, dass die kritischsten Ereignisse bei Wind aus Süden, Südwesten und Westen auftreten, die die FSRU von der Anlegestelle wegschieben. Die Grenzbedingungen und Überschreitungswahrscheinlichkeiten für jede Windrichtung lauten angesichts der Grenzkriterien für die Leinenlasten wie folgt:

Für die FSRU

Bezogen auf die Lasten im Vertäusystem bildet Wind die vorherrschende Kraft. Wellen haben eine geringere Wirkung, die deutlicher ausfällt, wenn die FSRU bei Wasserstand SKN in Ballast ist. Strömungen wirken sich schwächer aus. Die Überschreitungswahrscheinlichkeit beträgt ausgehend vom normalen Windklima am Projektstandort gemäß der Zeitreihe 0,00 % für ein durchschnittliches Jahr. Die Vertäuung der FSRU hält hundertjährlichen Wiederkehrintervallbedingungen für Winde aus 0–180° N und 300–330° N stand, in Kombination mit Wellen und Strömungen. Bezüglich der anderen Windrichtungen gilt:

- aus 210° N begrenzt auf 21 m/s (Wiederkehrintervall zwischen 20 und 50 Jahren)
- aus 240° N begrenzt auf 21 m/s (Wiederkehrintervall zwischen 10 und 20 Jahren)

IMDC TRACTEBEL SECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 70 von 169

- aus 270° N begrenzt auf 23 m/s (Wiederkehrintervall zwischen 20 und 50 Jahren)

Die zu erwartende Häufigkeit, mit der die FSRU die Anlegestelle verlassen muss, ist gemäß den ermittelten Zeitreihen ein Mal alle paar Jahre.

Für die FSRU mit den LNG-Tankern

Bezogen auf die Lasten im Vertäusystem bildet Wind die vorherrschende Kraft. Im letzten Simulationssatz wurden 11 m lange Recker verwendet (in früheren Simulationen wurden 22 m lange Recker verwendet). Dies macht das Vertäusystem steifer und anfälliger für Dünungswellen. Dadurch erhöhen sich unabhängig vom Wind die Leinenlasten. Strömungen wirken sich schwächer aus. Der LNG-Tanker mit 138.000 m3-Membrantank ist am anfälligsten für Dünungswellen, hauptsächlich bei Wasserstand SKN. Mit dem LNG-Tanker mit 138.000 m³-Membrantank hält das Vertäusystem hundertjährlichen metoceanen Bedingungen aus allen Windrichtungen stand, in Kombination mit Wellen und Strömungen in allen Szenarien, außer im folgenden: FSRU beladen und LNG-Tanker mit Membrantank 138 Tsd. in Ballast bei Wasserstand SKN. Zusammen mit Strömungen und Winden aus 30° N überschreiten die Leinenlasten in diesem Szenario unabhängig von der Windgeschwindigkeit die Grenzkriterien etwas. Das Vertäusystem hält in diesem Szenario hundertjährlichen Bedingungen für Winde aus 60-120° N und 180-210° N stand. Bezüglich der anderen Windrichtungen gilt:

- aus 0° N begrenzt auf 18 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,01 % für ein durchschnittliches Jahr.
- aus 150° N begrenzt auf 13 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,02 % für ein durchschnittliches Jahr.
- aus 240° N begrenzt auf 18 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,02 % für ein durchschnittliches Jahr.
- aus 270° N begrenzt auf 14 m/s (Wiederkehrintervall unter 1 Jahr) und Überschreitungswahrscheinlichkeit von 0,43 % für ein durchschnittliches Jahr.
- aus 330° N begrenzt auf 20 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,01 % für ein durchschnittliches Jahr.

Mit dem LNG-Tanker mit 170.000 m³-Membrantank hält das Vertäusystem hundertjährlichen Wiederkehrintervallbedingungen für Winde aus 30–210° N und 270–300° N stand, in Kombination mit Wellen und Strömungen. Bezüglich der anderen Windrichtungen gilt:

- aus 0° N begrenzt auf 19 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,01 % für ein durchschnittliches Jahr.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 71 von 169

- aus 240° N begrenzt auf 20 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,01 % für ein durchschnittliches Jahr.
- aus 330° N begrenzt auf 18 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,03 % für ein durchschnittliches Jahr.

Mit dem LNG-Tanker mit 177.000 m³-Kugeltank (Moss) hält das Vertäusystem hundertjährlichen Wiederkehrintervallbedingungen für Winde aus 0–180° N stand, in Kombination mit Wellen und Strömungen. Bezüglich der anderen Windrichtungen gilt:

- aus 210° N begrenzt auf 15 m/s (Wiederkehrintervall unter 1 Jahr) und Überschreitungswahrscheinlichkeit von 0,06 % für ein durchschnittliches Jahr.
- aus 240° N begrenzt auf 15 m/s (Wiederkehrintervall unter 1 Jahr) und Überschreitungswahrscheinlichkeit von 0,17 % für ein durchschnittliches Jahr.
- aus 270° N begrenzt auf 14 m/s (Wiederkehrintervall unter 1 Jahr) und Überschreitungswahrscheinlichkeit von 0,43 % für ein durchschnittliches Jahr.
- aus 300° N begrenzt auf 20 m/s (Wiederkehrintervall zwischen 2 und 5 Jahren) und Überschreitungswahrscheinlichkeit von 0,01 % für ein durchschnittliches Jahr.
- aus 330° N begrenzt auf 18 m/s (Wiederkehrintervall zwischen 1 und 2 Jahren) und Überschreitungswahrscheinlichkeit von 0,03 % für ein durchschnittliches Jahr.
- Eine ausführliche Zusammenfassung der Grenzbedingungen für lediglich die FSRU ist unter Anhang D Ergebnisse für die FSRU zu finden. Anhang E Ergebnisse für den Schiff-zu-Schiff-Betrieb enthält eine ausführliche Zusammenfassung für den Fall, dass an der FSRU LNG-Tanker angelegt sind.
- Mit Bewegungen sind sowohl die absoluten Bewegungen der Hochdrucksammelleitung in Bezug auf die Anfangsposition gemeint als auch die relativen Spitze-Spitze-Bewegungen von Schlauchanschlussstationen während des Schiff-zu-Schiff-Betriebs. Im Hinblick auf die Hochdrucksammelleitung liegen alle Simulationsbewegungen innerhalb des ermittelten maximalen Betriebsbereichs von 3 m. Im Hinblick auf die relativen Schiff-zu-Schiff-Bewegungen liegen alle Simulationsbewegungen innerhalb des ermittelten Betriebsbereichs von 2 m Schnellen und 1 m Versetzen.
 - Wenn lediglich FSRU: Bei Betrieb der Hochdrucksammelleitung beträgt die maximal auftretende Schnell-Bewegung 1,07 m, der maximale Versatz liegt bei 1,08 m.
 - Beim Schiff-zu-Schiff-Betrieb: Bei Betrieb der Hochdrucksammelleitung beträgt die maximal auftretende Schnell-Bewegung 1,25 m, der maximale Versatz liegt bei 0,98 m. Die ermittelte maximale betriebsinduzierte Schnellbewegung beträgt 1,68 m, und der maximale betriebsinduzierte relative Versatz beträgt 0,91 m.

Zu den oben genannten Werten aus der DMA sollte ein Sicherheitsfaktor addiert werden. Zum Beispiel kommt es bei Vorspannungen, die niedriger als die 7,5 % sind, zu stärkeren Bewegungen. Bei wechselnden Gezeiten beispielsweise im Laufe eines Tages kann sich auch der Bewegungsbereich insgesamt ändern. Wenn auf niedrigere Wasserstände nicht reagiert wird, resultiert dies darin, dass die Leinen mehr durchhängen. Auch können Ebbe- und

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 72 von 169

Flutströmungen zu einer Veränderung der gemittelten Position führen. In den DMA-Simulationen wird das Schiff für drei Stunden in einem durchschnittlichen Gleichgewicht gehalten. Die Analyse ergibt die dynamischen Bereiche.

Als maximaler Versatzbereich wird ein Halbkreis mit einem Radius von 3 m empfohlen. Hierfür wurden die Ergebnisse aus der DMA und einer Vorstudie zu den horizontalen Bewegungen der FSRU-Schlauchanschlussstation einbezogen, die Folgendes untersuchte:

- einen herkömmlichen Vertäuplan für die FSRU mit 138.000 m3, die an einem gewöhnlichen Liegeplatz mit 260.000 m3 Kapazität vertäut ist. Dies diente dazu, zu prüfen, ob dieser Plan den OCIMF/SIGTTO-Standardumgebungskriterien entspricht (statischer Wind bei 60 Knoten und verschiedene Strömungsgeschwindigkeiten). Dies traf zu:
- eine Bereichsanalyse, bei der das Schiff statisch durch Schnellen und Versetzen bewegt wird, bis die maximale Tragfähigkeit der Vertäuleinen erreicht ist.

Wichtig ist dabei, dass mehrere Komponenten für vertikale Bewegungen berücksichtigt werden müssen, beispielsweise für Gezeiten/Sturmflut, Schwankungen des Tiefgangs und durch vertikale Wellen erzeugte Bewegungsreaktionen.

8.2 Empfehlungen

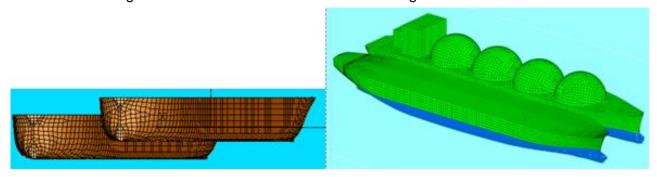
Auf Grundlage der Ergebnisse aus der DMA wurden die folgenden Schlussfolgerungen gezogen:

- Die FSRU muss in der Lage sein, abzulegen, sobald eine Vorhersage der hergeleiteten Grenzbedingungen für das vorhandene Vertäusystem ergeht.
- Der Schiff-zu-Schiff-Betrieb-Betrieb muss eingestellt werden und der angelegte Tanker muss rechtzeitig ablegen, sobald die hergeleiteten Grenzbedingungen vorhergesagt werden.
- Es muss ein funktionsfähiges Vorhersagesystem für Umgebungsdaten (Wind, Wasserstände, Wellen und Strömungen) eingeführt werden, um rechtzeitig handeln zu können, wenn Grenzbedingungen erwartet werden.
- Zur Überwachung der Leinenlasten und damit auch die Vorspannung der Leinen sollte ein entsprechendes System eingerichtet werden. Es sollte stets eine Vorspannung von mindestens 7,5 % MBL (entspricht etwa 9 t Vorspannung) erreicht werden. Mit einer niedrigeren Vorspannung kommt es zu stärkeren Schiffsbewegungen und damit zu einer höheren Last auf das Vertäusystem.
- Sobald die zulässigen Bewegungsbereiche der tatsächlich verwendeten flexiblen Schläuche für die FSRU und zwischen FSRU und LNG-Tanker bekannt sind, sollten die angelegten Bewegungskriterien überprüft werden.
- Das Vertäusystem benötigt einen detaillierten Inspektionsplan: Da die FSRU permanent vertäut ist, unterliegen die Vertäuleinen und Fender einem höheren Risiko von Ermüdungsschäden. Zusätzlich zu den durchzuführenden Inspektionen sollte ein Wartungsund Austauschplan für das Vertäusystem aufgestellt werden. Ziel ist, sicherzustellen, dass die Komponenten des Vertäusystems nicht zu stark verschleißen und damit weniger belastbar sind.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 73 von 169

Anhang A Beschreibung von Aktis DMA

Die Software Aktis DMA [18] kann die folgenden Merkmale berücksichtigen:


- Die frequenzabhängigen hydrodynamischen Reaktionseigenschaften des vertäuten Schiffes (hergeleitet mit AQWA-LINE). Diese werden dann mithilfe der Faltungsintegralmethode (Convolution Integral Method, Cummins, 1962) in den Zeitbereich übertragen, um die zeitabhängige Dämpfung der einwirkenden Wellen einzubeziehen. Mit AQWA LINE wird in Fällen mit mehreren Körpern (multi-body case) die Anwesenheit jedes schwimmenden Objekts berücksichtigt. Dies bedeutet, dass alle Wellenabschirmungen und andere Wellenwechselwirkungen einbezogen werden. Darüber hinaus berücksichtigen die schiffsspezifischen hydrodynamischen Reaktionskräfte (zusätzliche Masse und Dämpfung) jedes Schiffes die Anwesenheit anderer Schiffe.
 - Darüber hinaus werden auch die Auswirkungen einer begrenzten Kielfreiheit oder von Kaianlagen auf die Wellenkräfte und hydrodynamischen Reaktionskräfte einbezogen.
- Wellenkräfte 2. Ordnung (langsam variierendes Driften), berechnet mit dem AQWA LINE Beugungspaket. Dazu gehört auch die Wellenabschirmung von mehreren Schiffskörpern (multi-body case) (falls vorhanden).
- Zeitlich variierende Windstärken, einschließlich Richtungsvariabilität für branchenübliche Windspektren (API, NPD, Davenport und andere), wobei auch die Windabschirmung durch in der Nähe befindliche Objekte einbezogen wird.
- Nichtlineare Vertäuleinen (ggf. mit Reckern versehene Stahlseile) und Fenderkräfte.
- Viskose Dämpfungsterme für Roll- und für horizontale Bewegungen.
- Reaktion innerhalb der sechs Freiheitsgrade, indem die einwirkenden Wellenkräfte angemessen berücksichtigt und z. B. mit den windinduzierten Rollbewegungen gekoppelt werden, die durch das Fendersystem in Versatzbewegungen umgesetzt werden.
- Komplexe Wellensysteme, die vom selben Offshore-Wellensystem ausgehen, z. B. Wellen, die um verschiedene Spitzen eines Wellenbrechers laufen, oder Wellen, die in einem Hafen zurückgeworfen werden.
- Gängige Arten von Wellenspektren.

Der DMA-Output besteht aus Zeitreihen aller grundlegenden Schiffsbewegungen (Schnellen – surge, Versetzen – sway, Tauchen – heave, Rollen – roll, Stampfen – pitch, Gieren – yaw) sowie der zugehörigen Geschwindigkeiten und Beschleunigungen. Bezogen auf den Schiff-zu-Schiff-Betrieb-Betrieb können auch relative Bewegungen zwischen den Schiffen an bestimmten Stellen (z. B. Schlauchanschlussstation und Brückennock) ausgegeben werden, falls erforderlich. Vertäulasten und Dehnungen/Durchbiegungen werden für alle Vertäukomponenten berechnet (Lasten an Vertäuleinen, an Haken/Pollern und an Ankern, Fenderlasten). Bei Pollern, an denen mehrere Vertäuleinen befestigt sind, wird die kombinierte, sich im Zeitverlauf ändernde Last auf diese Leinen berücksichtigt.

AQWA: Hydrodynamische Eigenschaften vertäuter Schiffe

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 74 von 169

Das AQWA-Paket von ANSYS dient zur Berechnung der hydrodynamischen Eigenschaften von Schiffen. Es handelt sich um eine branchenübliche Software zum Entwickeln der primären hydrodynamischen Parameter, die zum Durchführen komplexer Bewegungs- und Reaktionsanalysen benötigt werden. Dreidimensionale lineare Einwirkung und Beugung können für einzelne oder mehrere schwimmende und/oder feste Körper durchgeführt werden. AQWA wendet eine 3-D-Panel-Methode an. Mithilfe eines sogenannten Dämpfungsdeckels lassen sich Kolbeneffekte an der Wasseroberfläche kontrollieren. Kolbeneffekte sind dann von Bedeutung, wenn Körper mit großen flachen Seiten in unmittelbarer Nähe zueinander angeordnet sind (Schiff-an-Schiff oder Schiff-am-Kai). AQWA bezieht die hydrodynamischen Wechselwirkungen zwischen Schiff und Meeresboden und/oder Kai und/oder zwischen Schiffen sowie in Fällen mit mehreren Körpern (multi-body case) Wellenabschirmungseffekte für Wellenlasten 1. und 2. Ordnung ein.

Beispiel einer Schiffsmodellierung mit AQWA für die Analyse eines Schiff-zu-Schiff-Ladungsumschlags [18]

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 75 von 169

Anhang B Wind und Wellen

Hundertjährliches Wiederkehrintervall

Wind		Windwellen					
Richtung aus (°N)	Geschwindigkeit (m/s)	Mdir aus (°N)	Hm0 (m)	Tp (s)	Gamma (JONSWAP)	Richtungsausbreitung (°)	Richtungsausbreitung (s)
0	27,2	347,2	2,1	5,1	2,3	9,6	24,7
30	22,6	9,4	1,6	4,4	2,8	5,4	32,4
60	18,0	51,1	1,2	3,8	3,3	5,5	32,1
90	21,0	94,2	1,3	3,8	3,4	5,7	31,6
120	17,9	122,8	1,1	3,7	3,5	7,5	27,7
150	16,8	138,8	1,0	3,7	2,4	10,3	24,0
180	21,6	150,7	1,3	4,1	1,7	7,9	27,0
210	24,2	171,0	1,2	3,8	1,5	4,5	35,0
240	26,4	239,5	1,0	3,0	2,9	1,9	46,5
270	26,0	314,3	1,3	4,3	1,5	4,9	33,8
300	26,8	333,5	1,8	4,9	1,9	11,5	22,8
330	27,8	339,0	2,1	5,2	2,0	13,7	21,1

Dünungswellen							
Sektor	Mdir aus (°N)	Hm0 (m)	Tp (s)	Gamma (JONSWAP)	Richtungsausbreitung (s)	Richtungsausbreitung (°)	
West	345	0,1	13,5	1,8	34,0	13,5	
WNW	348	0,1	14,7	1,8	29,9	14,5	
NNW	356	0,2	15,4	1,8	19,2	18,1	
Nord	358	0,4	8,7	1,1	12,6	21,9	
NNO	0	0,4	6,7	1,7	9,4	25,0	

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 76 von 169

Fünfzigjährliches Wiederkehrintervall

Wind		Windwellen					
Richtun g aus (°N)	Geschwindigk eit (m/s)	Mdir aus (°N)	Hm0 (m)	Tp (s)	Gamma (JONSWA P)	Richtungsausbreitu ng (°)	Richtungsausbreitu ng (s)
0	25,4	345,6	2,0	5,0	2,3	10,1	24,2
30	21,3	8,7	1,5	4,3	2,8	5,3	32,7
60	17,1	51,0	1,1	3,7	3,2	5,3	32,7
90	19,7	93,7	1,2	3,7	3,4	5,6	31,7
120	17,0	122,5	1,1	3,6	3,7	7,5	27,7
150	16,1	138,6	0,9	3,6	2,4	10,2	24,0
180	20,5	150,7	1,2	4,1	1,8	8,3	26,4
210	23,0	171,1	1,1	3,7	1,5	4,5	35,0
240	25,0	239,6	1,0	2,9	2,8	1,9	46,4
270	24,6	314,2	1,3	4,2	1,6	4,8	34,0
300	25,3	333,5	1,7	4,8	1,9	11,5	22,8
330	26,2	339,1	2,0	5,1	2,0	13,8	21,0

Zwanzigjährliches Wiederkehrintervall

Wind		Windwellen					
Richtun g aus (°N)	Geschwindigk eit (m/s)	Mdir aus (°N)	Hm0 (m)	Tp (s)	Gamma (JONSWA P)	Richtungsausbreitu ng (°)	Richtungsausbreitu ng (s)
0	22,9	347,0	1,8	4,9	2,4	9,6	24,8
30	19,4	9,5	1,4	4,2	2,8	5,2	32,9
60	15,9	51,2	1,0	3,5	3,3	5,3	32,5
90	17,9	92,7	1,1	3,6	3,5	5,7	31,5
120	15,7	122,7	1,0	3,5	3,5	7,5	27,8
150	15,1	138,7	0,9	3,5	2,2	10,1	24,1
180	18,9	151,0	1,1	4,0	1,7	8,3	26,5
210	21,5	171,4	1,0	3,6	1,5	4,5	35,0
240	23,1	239,8	0,9	2,9	2,8	2,0	45,9
270	22,7	313,9	1,2	4,1	1,7	4,8	34,1
300	23,3	334,2	1,6	4,6	1,9	11,3	23,0
330	24,1	339,1	1,9	5,0	2,0	13,8	21,0

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 77 von 169

Zehnjährliches Wiederkehrintervall

Wind		Windwellen					
Richtun g aus (°N)	Geschwindigk eit (m/s)	Mdir aus (°N)	Hm 0 (m)	Tp (s)	Gamma (JONSWA P)	Richtungsausbreitu ng (°)	Richtungsausbreitu ng (s)
0	21,0	347,7	1,7	4,7	2,4	9,4	24,9
30	18,1	10,2	1,3	4,1	2,8	5,2	32,9
60	15,1	51,1	1,0	3,5	3,3	5,4	32,4
90	16,6	91,9	1,0	3,5	3,2	5,8	31,4
120	14,7	122,6	0,9	3,4	3,5	7,3	28,0
150	14,4	138,9	0,8	3,4	2,2	10,1	24,1
180	17,7	151,1	1,1	3,8	1,7	8,3	26,5
210	20,3	171,5	1,0	3,5	1,5	4,5	35,0
240	21,7	239,8	0,8	2,8	2,8	2,0	45,8
270	21,4	313,5	1,1	4,0	1,7	4,8	34,2
300	21,9	334,2	1,5	4,5	1,9	11,1	23,2
330	22,4	339,7	1,7	4,9	2,1	13,7	21,1

Fünfjährliches Wiederkehrintervall

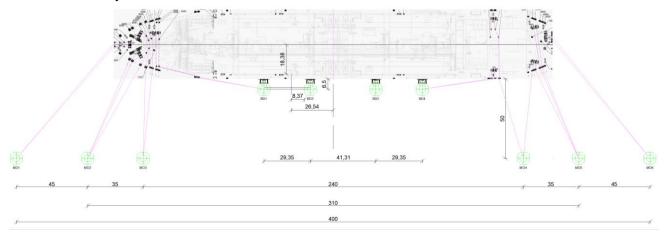
Wind		Windwellen					
Richtun g aus (°N)	Geschwindigk eit (m/s)	Mdir aus (°N)	Hm 0 (m)	Tp (s)	Gamma (JONSWA P)	Richtungsausbreitu ng (°)	Richtungsausbreitu ng (s)
0	19,1	348,1	1,5	4,5	2,4	9,3	25,1
30	16,7	10,9	1,2	3,9	2,8	5,3	32,8
60	14,2	51,2	0,9	3,4	3,3	5,5	32,2
90	15,3	91,3	1,0	3,4	3,2	5,8	31,3
120	13,7	122,2	0,8	3,3	3,5	7,4	28,0
150	13,6	139,0	0,8	3,4	2,2	10,1	24,2
180	16,6	151,3	1,0	3,7	1,7	8,3	26,4
210	19,1	171,9	0,9	3,4	1,5	4,5	35,0
240	20,3	241,5	0,8	2,7	2,8	1,9	46,3
270	20,0	313,5	1,0	3,8	1,7	4,7	34,3
300	20,4	335,0	1,4	4,5	1,9	11,0	23,3
330	20,8	339,3	1,6	4,7	2,1	13,8	21,0

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 78 von 169

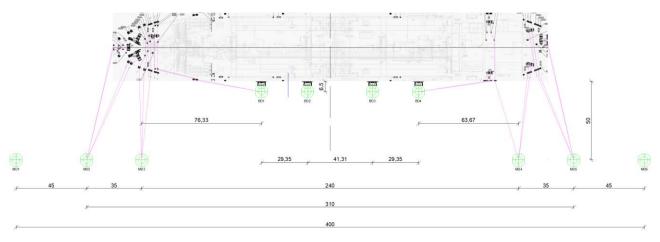
Zweijährliches Wiederkehrintervall

Wind		Windwel	llen				
Richtun g aus (°N)	Geschwindigk eit (m/s)	Mdir aus (°N)	Hm 0 (m)	Tp (s)	Gamma (JONSWA P)	Richtungsausbreitu ng (°)	Richtungsausbreitu ng (s)
0	16,7	349,1	1,3	4,3	2,4	9,1	25,4
30	14,9	12,3	1,1	3,8	2,8	5,3	32,7
60	13,0	51,7	0,8	3,7	3,3	7,2	28,3
90	13,6	90,4	0,8	3,2	3,2	5,9	31,1
120	12,4	121,9	0,7	3,1	3,5	7,2	28,2
150	12,7	138,7	0,7	3,3	2,2	10,0	24,3
180	15,0	151,7	0,9	3,6	1,7	8,3	26,5
210	17,6	172,5	0,8	3,3	1,5	4,5	35,2
240	18,4	240,3	0,7	2,6	2,8	2,1	45,3
270	18,1	312,6	0,9	3,7	1,7	4,6	34,7
300	18,4	334,6	1,3	4,3	1,9	10,6	23,6
330	18,7	339,6	1,4	4,5	2,1	13,7	21,1

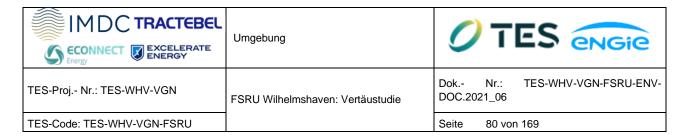
Jährliches Wiederkehrintervall

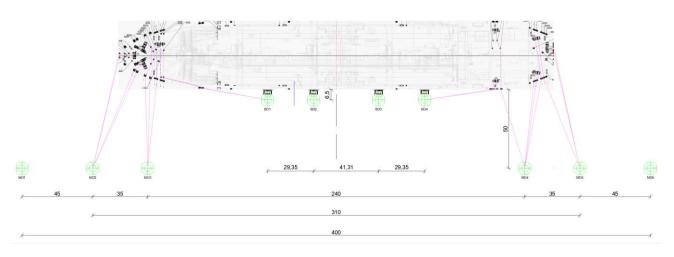

Wind		Windwel	len				
Richtun g aus (°N)	Geschwindigk eit (m/s)	Mdir aus (°N)	Hm 0 (m)	Tp (s)	Gamma (JONSWA P)	Richtungsausbreitu ng (°)	Richtungsausbreitu ng (s)
0	14,8	349,1	1,2	4,1	2,4	9,1	25,4
30	13,5	12,3	1,0	3,7	2,8	5,3	32,7
60	12,1	51,7	0,7	3,5	3,3	7,2	28,3
90	12,3	90,4	0,7	3,0	3,2	5,9	31,1
120	11,4	121,9	0,7	3,1	3,5	7,2	28,2
150	12,0	138,7	0,6	3,1	2,2	10,0	24,3
180	13,8	151,7	0,9	3,6	1,7	8,3	26,5
210	16,4	172,5	0,8	3,2	1,5	4,5	35,2
240	17,0	240,3	0,6	2,5	2,8	2,1	45,3
270	16,7	312,6	0,9	3,6	1,7	4,6	34,7
300	16,9	334,6	1,2	4,2	1,9	10,6	23,6
330	17,0	339,6	1,4	4,4	2,1	13,7	21,1

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 79 von 169

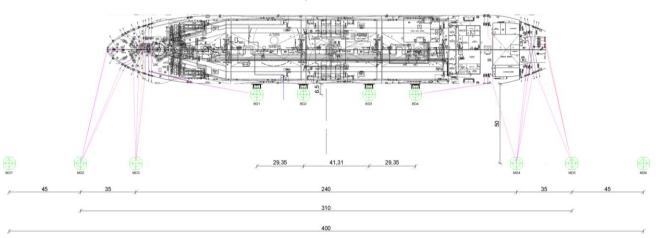

Anhang C Sensitivitätsanalyse

Vor der Untersuchung der Grenzbedingungen das sichere Verbleiben an der Anlegestelle wird eine Sensitivitätsanalyse durchgeführt. Diese Studie zeigt den Einfluss der unterschiedlichen metoceanen Bedingungen, der Vertäuanordnung und der Vertäuvorrichtung auf die DMA und hilft bei der Festlegung der optimierten endgültigen Anordnung.

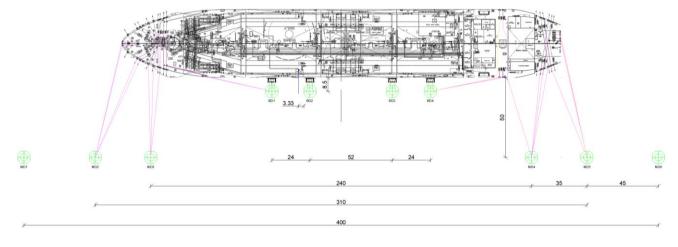

Die folgenden Abbildungen zeigen die verschiedenen Vertäuanordnungen, die bei der Sensitivitätsanalyse untersucht wurden.



Vertäuanordnung Option 1.2 (2-3-2-2 2-2-3-2)

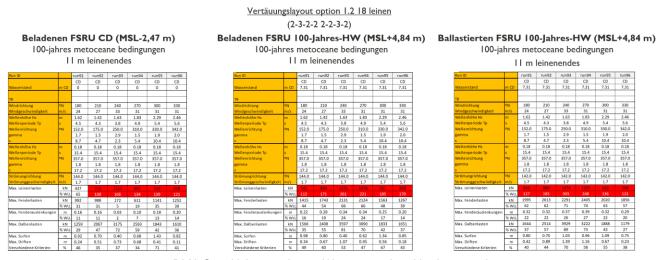


Vertäuanordnung Option 2.2 (4-3-2 2-3-4)



Vertäuanordnung Option 3.2 (4-3-2 2-4-4)

Vertäuanordnung Option 4.2 (4-4-2 2-4-4)



Vertäuanordnung Option 5.2 (4-3-2 3-4-4)

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 81 von 169

Nachfolgend werden die zentralen Ergebnisse und Schlussfolgerungen aus der Sensitivitätsanalyse vorgestellt. Wichtige Hinweise: Die hier verwendete Abkürzung "SWL" steht für die Tragfähigkeit (WLL, Working Load Limit). Das Grenzkriterium lautet 55 % der MBL. Diese beträgt 1216 kN. Das Grenzkriterium für Leinenlasten liegt daher bei 669 kN.

1- <u>Wasserstand und Ladezustand:</u> Den Ergebnissen zufolge bildet am Standort der FSRU Wind die dominierende Kraft. Die Vertäubedingungen mit der stärksten Grenzbedingung treten bei extremem Hochwasserstand und FSRU in Ballast auf.

DMA-Sensitivitätsanalyse – Wasserstand und Ladezustände

2- Anordnung 1.2 und Anordnung 2.2:Bei der Betrachtung der Vertäuanordnung der Option 2.2 sind die Lasten den Ergebnissen zufolge in den am stärksten belasteten Leinen reduziert, da die Winde außerhalb des Liegeplatzes aus 210° N, 240° N und 270° N kommen. Aus den anderen Windrichtungen nehmen die maximalen Leinenlasten zu. Angesichts dieser Schlussfolgerungen – da die in Option 1.2 auftretenden maximalen Leinenlasten reduziert werden müssen – handelt es sich bei Option 2.2 um die bestgeeignete Vertäuanordnung. Zwar steigen die Lasten in andere Richtungen. Dennoch verringert sich die maximale Gesamtleinenlast.

Vertäuungslayout option 1.2 18 leinen (2-3-2-2 2-2-3-2)

Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m)
100-jahres metoceane bedingungen
11 m leinenendes

Run ID		run91	run92	run93	run94	run95	run96
		CD	CD	CD	CD	CD	CD
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31
TR							
Windrichtung	∘N	180	210	240	270	300	330
Windgeschwindigkeit	m/s	24	27	33	31	31	31
Wellenhöhe Hs	m	1.62	1.42	1.63	1.83	2.29	2.46
Wellenperiode Tp	s	4.5	4.3	3.8	4.9	5.4	5.6
Wellenrichtung	°N	152.0	175.0	250.0	310.0	330.0	342.0
gamma		1.7	1.5	2.9	1.5	1.9	2.0
s		8.7	4.7	2.3	5.4	10.4	10.4
Wellenhöhe Hs	m	0.18	0.18	0.18	0.18	0.18	0.18
Wellenperiode Tp	s	15.4	15.4	15.4	15.4	15.4	15.4
Wellenrichtung	∘N	357.0	357.0	357.0	357.0	357.0	357.0
gamma		1.8	1.8	1.8	1.8	1.8	1.8
s		17.2	17.2	17.2	17.2	17.2	17.2
Strömungrichtung	δN	142.0	142.0	142.0	142.0	142.0	142.0
Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7
Max. Leinenlasten	kN	618	890	1474	1205	663	593
	% WLL		183	303	248	136	
Max. Fenderlasten	kN	1995	2013	2291	2405	2020	1856
	% WLL	62	62	71	74	63	57
Max. Fenderauslenkungen	m	0.32	0.32	0.37	0.39	0.32	0.29
	% WLL	22	22	26	27	22	20
Max. Dalbenlasten	kN	1644	2514	3929	3222	1888	1179
	% WLL	37	57	89	73	43	27
Max. Surfen	m	0.80	0.70	1.03	0.96	1.09	0.75
Max. Driften	m	0.42	0.89	1.39	1.16	0.67	0.23
Verschiedene Kriterien	%	40	44	70	58	55	38

Vertäuungslayout option 2.2 18 leinen (4-3-2 2-3-4)

Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m) 100-jahres metoceane bedingungen 11 m leinenendes

Run ID		run91	run92	run93	run94	run95	run96
		CD	CD	CD	CD	CD	CD
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31
TR							
Windrichtung	∘N	180	210	240	270	300	330
Windgeschwindigkeit	m/s	24	27	33	31	31	31
Wellenhöhe Hs	m	1.62	1.42	1.63	1.83	2.29	2.46
Wellenperiode Tp	s	4.5	4.3	3.8	4.9	5.4	5.6
Wellenrichtung	٥N	152.0	175.0	250.0	310.0	330.0	342.0
gamma		1.7	1.5	2.9	1.5	1.9	2.0
s		8.7	4.7	2.3	5.4	10.4	10.4
Wellenhöhe Hs	m	0.18	0.18	0.18	0.18	0.18	0.18
Wellenperiode Tp	s	15.4	15.4	15.4	15.4	15.4	15.4
Wellenrichtung	δN	357.0	357.0	357.0	357.0	357.0	357.0
gamma		1.8	1.8	1.8	1.8	1.8	1.8
s		17.2	17.2	17.2	17.2	17.2	17.2
Strömungrichtung	δN	142.0	142.0	142.0	142.0	142.0	142.0
Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7
Max. Leinenlasten	kN	842	858	1234	1006	781	687
	% WLL	173	176	254	207	161	141
Max. Fenderlasten	kN	1959	1922	2097	2095	2008	1801
	% WLL	61	59	65	65	62	56
Max. Fenderauslenkungen	m	0.31	0.30	0.33	0.33	0.32	0.28
	% WLL	22	21	23	23	22	20
Max. Dalbenlasten	kN	2369	3366	4509	3897	2361	1367
	% WLL	54	76	102	88	53	31
Max. Surfen	m	1.09	1.01	0.67	0.77	1.42	0.78
Max. Driften	m	0.37	0.81	1.28	1.04	0.61	0.23
Verschiedene Kriterien	%	55	50	64	52	71	39

DMA-Sensitivitätsanalyse – Anordnung 1.2 und Anordnung 2.2

3- <u>11-m- und 22-m-Recker:</u> Bei der Vertäuanordnung 2.2 mit 11-m-Reckern treten keine übermäßigen Bewegungen auf. Daher ist es auch möglich, durch die Verwendung von 22-m-Reckern – und reduzierten maximalen Leinenlasten – mehr Bewegung zu ermöglichen.

Vertäuungslayout option 2.2 18 leinen

 $(4-3-2\ 2-3-4)$

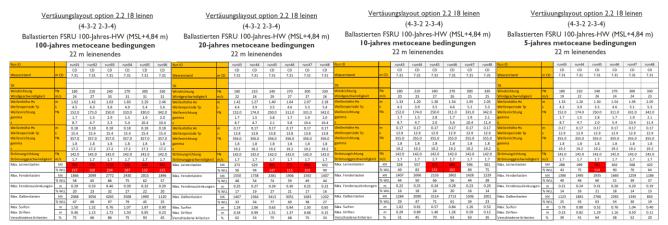
Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m) 100-jahres metoceane bedingungen

II m leinenendes

Run ID		run91	run92	run93	run94	run95	run96
		CD	CD	CD	CD	CD	CD
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31
TR							
Windrichtung	δN	180	210	240	270	300	330
Windgeschwindigkeit	m/s	24	27	33	31	31	31
Wellenhöhe Hs	m	1.62	1.42	1.63	1.83	2.29	2.46
Wellenperiode Tp	s	4.5	4.3	3.8	4.9	5.4	5.6
Wellenrichtung	δN	152.0	175.0	250.0	310.0	330.0	342.0
gamma		1.7	1.5	2.9	1.5	1.9	2.0
S		8.7	4.7	2.3	5.4	10.4	10.4
Wellenhöhe Hs	m	0.18	0.18	0.18	0.18	0.18	0.18
Wellenperiode Tp	s	15.4	15.4	15.4	15.4	15.4	15.4
Wellenrichtung	οN	357.0	357.0	357.0	357.0	357.0	357.0
gamma		1.8	1.8	1.8	1.8	1.8	1.8
S		17.2	17.2	17.2	17.2	17.2	17.2
Strömungrichtung	δN	142.0	142.0	142.0	142.0	142.0	142.0
Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7
Max. Leinenlasten	kN	842	858	1234	1006	781	687
	% WLL	173	176	254	207	161	141
Max. Fenderlasten	kN	1959	1922	2097	2095	2008	1801
	% WLL	61	59	65	65	62	56
Max. Fenderauslenkungen	m	0.31	0.30	0.33	0.33	0.32	0.28
	% WLL	22	21	23	23	22	20
Max. Dalbenlasten	kN	2369	3366	4509	3897	2361	1367
	% WLL	54	76	102	88	53	31
Max. Surfen	m	1.09	1.01	0.67	0.77	1.42	0.78
Max. Driften	m	0.37	0.81	1.28	1.04	0.61	0.23
Verschiedene Kriterien	%	55	50	64	52	71	39

Vertäuungslayout option 2.2 18 leinen

(4-3-2 2-3-4)


Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m) 100-jahres metoceane bedingungen

22 m leinenendes

Run ID		run91	run92	run93	run94	run95	run96
		CD	CD	CD	CD	CD	CD
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31
TR							
Windrichtung	ōN	180	210	240	270	300	330
Windgeschwindigkeit	m/s	24	27	33	31	31	31
Wellenhöhe Hs	m	1.62	1.42	1.63	1.83	2.29	2.46
Wellenperiode Tp	s	4.5	4.3	3.8	4.9	5.4	5.6
Wellenrichtung	οN	152.0	175.0	250.0	310.0	330.0	342.0
gamma		1.7	1.5	2.9	1.5	1.9	2.0
s		8.7	4.7	2.3	5.4	10.4	10.4
Wellenhöhe Hs	m	0.18	0.18	0.18	0.18	0.18	0.18
Wellenperiode Tp	s	15.4	15.4	15.4	15.4	15.4	15.4
Wellenrichtung	δN	357.0	357.0	357.0	357.0	357.0	357.0
gamma		1.8	1.8	1.8	1.8	1.8	1.8
s		17.2	17.2	17.2	17.2	17.2	17.2
Strömungrichtung	οN	142.0	142.0	142.0	142.0	142.0	142.0
Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7
Max. Leinenlasten	kN	762	776	1138	910	640	561
	% WLL	157	160	234	187	132	
Max. Fenderlasten	kN	1866	2099	2772	2430	2015	1846
	% WLL	58	65	86	75	62	57
Max. Fenderauslenkungen	m	0.29	0.33	0.46	0.39	0.32	0.29
	% WLL	20	23	32	27	22	20
Max. Dalbenlasten	kN	2068	3056	4265	3508	1990	1120
	% WLL	47	69	97	79	45	25
Max. Surfen	m	1.50	1.32	0.76	1.07	1.87	0.90
Max. Driften	m	0.46	1.15	1.72	1.50	0.85	0.23
Verschiedene Kriterien	%	75	66	86	75	93	45

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 83 von 169

- 4- Metoceane Grenzbedingungen für Vertäuanordnung 1.2: Bezogen auf die hundertjährlichen Bedingungen überschreiten die Lasten im Vertäusystem die maximal zulässigen Grenzwerte. Vor diesem Hintergrund, und da der Anschluss der FSRU-Schlauchanschlussstation abnehmbar ist (entriegelbar durch Emergency Release System), wurde eine große Anzahl von metoceanen Bedingungen simuliert, um die Grenzbedingungen für das sichere Verbleiben an der Anlegestelle zu ermitteln. Die Vertäuanordnung 2.2 mit 22-m-Reckern wurde unter metoceanen Bedingungen für fünfzig-, zwanzig-, zehn- und fünfjährliche Wiederkehrintervalle getestet.
 - aus 30–150° N funktioniert die Bemessungsbedingung (45 % MBL), sodass es keine Ausfallzeit gibt; aus 0° N hat die Grenzbedingung (55 % MBL) ein hundertjährliches Wiederkehrintervall
 - aus 180–210° N und aus 330° N hat die Grenzbedingung (55 % MBL) ein zwanzigjährliches Wiederkehrintervall
 - aus 300° N hat die Grenzbedingung (55 % MBL) ein zehnjährliches Wiederkehrintervall
 - aus 270° N hat die Grenzbedingung (55 % MBL) ein fünfjährliches Wiederkehrintervall
 - aus 240° N hat die Grenzbedingung (55 % MBL) ein zweijährliches Wiederkehrintervall

DMA-Sensitivitätsanalyse – Metoceane Grenzbedingungen für Vertäuanordnung 1.2

5- <u>Auswirkung des Wasserstands:</u> Der hundertjährliche Gesamtwasserstand wurde aus dem höheren Band der Extremanalyse gewählt. Daher wurde auch das Zwischenband mit +4,33 m gemessen. Die Ergebnisse unterscheiden sich jedoch nicht signifikant, wenn der Wasserstand um 0,5 m verändert wird.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 84 von 169

Vertäuungslayout option 2.2 18 leinen
(4-3-2 2-3-4)
Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m)
5-jahres metoceane bedingungen
22 m leinenendes

Run ID		run43	run44	run45	run46	run47	run48
		CD	CD	CD	CD	CD	CD
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31
TR							
Windrichtung	ºN	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	22	26	24	24	23
Wellenhöhe Hs	m	1.33	1.20	1.30	1.54	1.95	2.05
Wellenperiode Tp	s	4.2	3.9	3.5	4.6	5.1	5.3
Wellenrichtung	δN	152.0	174.0	250.0	311.0	331.0	342.0
gamma		1.7	1.5	2.8	1.7	1.9	2.1
s		8.7	4.7	2.0	5.4	10.4	11.4
Wellenhöhe Hs	m	0.17	0.17	0.17	0.17	0.17	0.17
Wellenperiode Tp	s	12.9	12.9	12.9	12.9	12.9	12.9
Wellenrichtung	ºN	355.0	355.0	355.0	355.0	355.0	355.0
gamma		1.8	1.8	1.8	1.8	1.8	1.8
s		19.2	19.2	19.2	19.2	19.2	19.2
Strömungrichtung	∘N	142.0	142.0	142.0	142.0	142.0	142.0
Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7
Max. Leinenlasten	kN	288	501	762	591	501	420
	% WLL	43	75	114	88	75	63
Max. Fenderlasten	kN	1340	1528	1981	1678	1245	1196
	% WLL	41	47	61	52	39	37
Max. Fenderauslenkungen	m	0.21	0.24	0.31	0.27	0.20	0.19
	% WLL	15	17	22	18	14	13
Max. Dalbenlasten	kN	1125	1893	2770	2342	1341	838
	% WLL	25	43	63	53	30	19
Max. Surfen	m	0.74	0.77	0.46	0.74	1.00	0.39
Max. Driften	m	0.22	0.80	1.25	1.12	0.49	0.11
Verschiedene Kriterien	%	37	40	63	56	50	19

Vertäuungslayout option 2.2 18 leinen
(4-3-2 2-3-4)
Ballastierten FSRU 100-Jahres-HW (MSL+4,33 m)
5-jahres metoceane bedingungen
22 m leinenendes

Run ID		run43	run44	run45	run46	run47	run48
		CD	CD	CD	CD	CD	CD
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31
TR							
Windrichtung	٥N	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	22	26	24	24	23
Wellenhöhe Hs	m	1.33	1.20	1.30	1.54	1.95	2.05
Wellenperiode Tp	s	4.2	3.9	3.5	4.6	5.1	5.3
Wellenrichtung	δN	152.0	174.0	250.0	311.0	331.0	342.0
gamma		1.7	1.5	2.8	1.7	1.9	2.1
s		8.7	4.7	2.0	5.4	10.4	11.4
Wellenhöhe Hs	m	0.17	0.17	0.17	0.17	0.17	0.17
Wellenperiode Tp	s	12.9	12.9	12.9	12.9	12.9	12.9
Wellenrichtung	δN	355.0	355.0	355.0	355.0	355.0	355.0
gamma		1.8	1.8	1.8	1.8	1.8	1.8
s		19.2	19.2	19.2	19.2	19.2	19.2
Strömungrichtung	δN	142.0	142.0	142.0	142.0	142.0	142.0
Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7
Max. Leinenlasten	kN	288	500	762	590	499	419
	% WLL	43	75	114	88	75	63
Max. Fenderlasten	kN	1357	1501	1949	1688	1252	1188
	% WLL	42	46	60	52	39	37
Max. Fenderauslenkungen	m	0.22	0.24	0.31	0.27	0.20	0.19
	% WLL	15	17	21	19	14	13
Max. Dalbenlasten	kN	1126	1890	2765	2336	1341	835
	% WLL	26	43	63	53	30	19
Max. Surfen	m	0.74	0.77	0.46	0.74	1.00	0.40
Max. Driften	m	0.22	0.80	1.25	1.11	0.50	0.12
Verschiedene Kriterien	%	37	40	63	56	50	20

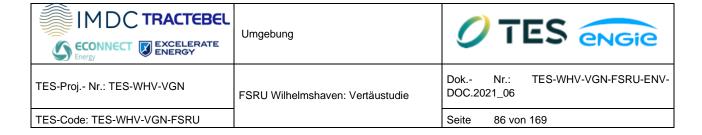
DMA-Sensitivitätsanalyse – Wasserstände

6- Anordnung 2.2 und Anordnung 3.2:Um Ausfallzeiten zu reduzieren, gibt es am Heck eine zusätzliche Leine, siehe Vertäuanordnung 3.2. Dies reduziert die maximale Leinenlast. Aber die metoceane Grenzbedingung hat Wind aus 240° N immer noch ein zweijährliches Wiederkehrintervall.

Vertäuungslayout option 2.2 18 leinen (4-3-2 2-3-4)

Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m) 5-jahres metoceane bedingungen 22 m leinenendes

Run ID		run43	run44	run45	run46	run47	run48
		CD	CD	CD	CD	CD	CD
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31
TR							
Windrichtung	ºN	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	22	26	24	24	23
Wellenhöhe Hs	m	1.33	1.20	1.30	1.54	1.95	2.05
Wellenperiode Tp	s	4.2	3.9	3.5	4.6	5.1	5.3
Wellenrichtung	ºN	152.0	174.0	250.0	311.0	331.0	342.0
gamma		1.7	1.5	2.8	1.7	1.9	2.1
s		8.7	4.7	2.0	5.4	10.4	11.4
Wellenhöhe Hs	m	0.17	0.17	0.17	0.17	0.17	0.17
Wellenperiode Tp	s	12.9	12.9	12.9	12.9	12.9	12.9
Wellenrichtung	ºN	355.0	355.0	355.0	355.0	355.0	355.0
gamma		1.8	1.8	1.8	1.8	1.8	1.8
s		19.2	19.2	19.2	19.2	19.2	19.2
Strömungrichtung	ºN	142.0	142.0	142.0	142.0	142.0	142.0
Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7
Max. Leinenlasten	kN	288	499	761	602	508	425
	% WLL	43	75	114	90	76	64
Max. Fenderlasten	kN	1306	1495	1935	1660	1259	1186
	% WLL	40	46	60	51	39	37
Max. Fenderauslenkungen	m	0.21	0.24	0.31	0.26	0.20	0.19
	% WLL	14	16	21	18	14	13
Max. Dalbenlasten	kN	1123	1891	2766	2392	1345	850
	% WLL	25	43	63	54	30	19
Max. Surfen	m	0.78	0.80	0.52	0.76	1.04	0.40
Max. Driften	m	0.23	0.82	1.29	1.16	0.50	0.11
Verschiedene Kriterien	%	39	41	64	58	52	20


Vertäuungslayout option 3.2 19 leinen (4-3-2 2-4-4)

Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m) 5-jahres metoceane bedingungen 22 m leinenendes

Run ID		run43	run44	run45	run46	run47	run48
		CD	CD	CD	CD	CD	CD
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31
TR							
Windrichtung	δN	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	22	26	24	24	23
Wellenhöhe Hs	m	1.33	1.20	1.30	1.54	1.95	2.05
Wellenperiode Tp	s	4.2	3.9	3.5	4.6	5.1	5.3
Wellenrichtung	∘N	152.0	174.0	250.0	311.0	331.0	342.0
gamma		1.7	1.5	2.8	1.7	1.9	2.1
s		8.7	4.7	2.0	5.4	10.4	11.4
Wellenhöhe Hs	m	0.17	0.17	0.17	0.17	0.17	0.17
Wellenperiode Tp	s	12.9	12.9	12.9	12.9	12.9	12.9
Wellenrichtung	δN	355.0	355.0	355.0	355.0	355.0	355.0
gamma		1.8	1.8	1.8	1.8	1.8	1.8
s		19.2	19.2	19.2	19.2	19.2	19.2
Strömungrichtung	δN	142.0	142.0	142.0	142.0	142.0	142.0
Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7
Max. Leinenlasten	kN	295	438	712	607	455	388
	% WLL	44	65	106	91	68	58
Max. Fenderlasten	kN	1339	1528	2045	1667	1247	1242
	% WLL	41	47	63	52	39	38
Max. Fenderauslenkungen	m	0.21	0.24	0.32	0.26	0.20	0.20
	% WLL	15	17	23	18	14	14
Max. Dalbenlasten	kN	997	1713	2754	2390	1385	773
	% WLL	23	39	62	54	31	18
Max. Surfen	m	0.72	0.93	0.89	0.80	0.89	0.36
Max. Driften	m	0.20	0.76	1.19	1.06	0.46	0.12
Verschiedene Kriterien	%	36	46	59	53	45	18

DMA-Sensitivitätsanalyse – Anordnung 2.2 und Anordnung 3.2

7- Anordnung 3.2 und Anordnung 4.2: In Anordnung 4.2 gibt es eine zusätzliche Querleine am Bug und insgesamt 20 Leinen. Die Anordnung 4.2 funktioniert bei einem fünfjährlichen Wiederkehrintervall. Aus 240° N erreicht sie maximale Leinenlasten unterhalb von 669 kN. Es lassen sich an der FSRU jedoch keine zusätzlichen Winden/Vorrichtungen anbringen, um weitere Vertäuleinen zu vertäuen. Daher ist diese Option nicht umsetzbar.

Vertäuungslayout option 3.2 19 leinen (4-3-2 2-4-4)

Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m)
5-jahres metoceane bedingungen
22 m leinenendes

Run ID		run43	run44	run45	run46	run47	run48	
		CD	CD	CD	CD	CD	CD	
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31	
TR								
Windrichtung	εN	180	210	240	270	300	330	
Windgeschwindigkeit	m/s	19	22	26	24	24	23	
Wellenhöhe Hs	m	1.33	1.20	1.30	1.54	1.95	2.05	
Wellenperiode Tp	s	4.2	3.9	3.5	4.6	5.1	5.3	
Wellenrichtung	οN	152.0	174.0	250.0	311.0	331.0	342.0	
gamma		1.7	1.5	2.8	1.7	1.9	2.1	
s		8.7	4.7	2.0	5.4	10.4	11.4	
Wellenhöhe Hs	m	0.17	0.17	0.17	0.17	0.17	0.17	
Wellenperiode Tp	s	12.9	12.9	12.9	12.9	12.9	12.9	
Wellenrichtung	δN	355.0	355.0	355.0	355.0	355.0	355.0	
gamma		1.8	1.8	1.8	1.8	1.8	1.8	
s		19.2	19.2	19.2	19.2	19.2	19.2	
Strömungrichtung	ōΝ	142.0	142.0	142.0	142.0	142.0	142.0	
Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7	
Max. Leinenlasten	kN	295	438	712	607	455	388	
	% WLL	44	65	106	91	68	58	
Max. Fenderlasten	kN	1339	1528	2045	1667	1247	1242	
	% WLL	41	47	63	52	39	38	
Max. Fenderauslenkungen	m	0.21	0.24	0.32	0.26	0.20	0.20	
	% WLL	15	17	23	18	14	14	
Max. Dalbenlasten	kN	997	1713	2754	2390	1385	773	
	% WLL	23	39	62	54	31	18	
Max. Surfen	m	0.72	0.93	0.89	0.80	0.89	0.36	
Max. Driften	m	0.20	0.76	1.19	1.06	0.46	0.12	
Verschiedene Kriterien	%	36	46	59	53	45	18	

Vertäuungslayout option 4.2 20 leinen (4-4-2 2-4-4)

Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m)
5-jahres metoceane bedingungen
22 m leinenendes

Run ID		run43	run44	run45	run46	run47	run48
		CD	CD	CD	CD	CD	CD
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31
TR							
Windrichtung	δN	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	22	26	24	24	23
Wellenhöhe Hs	m	1.33	1.20	1.30	1.54	1.95	2.05
Wellenperiode Tp	s	4.2	3.9	3.5	4.6	5.1	5.3
Wellenrichtung	δN	152.0	174.0	250.0	311.0	331.0	342.0
gamma		1.7	1.5	2.8	1.7	1.9	2.1
s		8.7	4.7	2.0	5.4	10.4	11.4
Wellenhöhe Hs	m	0.17	0.17	0.17	0.17	0.17	0.17
Wellenperiode Tp	s	12.9	12.9	12.9	12.9	12.9	12.9
Wellenrichtung	δN	355.0	355.0	355.0	355.0	355.0	355.0
gamma		1.8	1.8	1.8	1.8	1.8	1.8
s		19.2	19.2	19.2	19.2	19.2	19.2
Strömungrichtung	δN	142.0	142.0	142.0	142.0	142.0	142.0
Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7
Max. Leinenlasten	kN	285	431	621	529	469	387
	% WLL	43	64	93	79	70	58
Max. Fenderlasten	kN	1303	1574	2055	1670	1214	1239
	% WLL	40	49	64	52	38	38
Max. Fenderauslenkungen	m	0.21	0.25	0.33	0.26	0.19	0.20
	% WLL	14	17	23	18	13	14
Max. Dalbenlasten	kN	1006	1685	2409	2091	1276	774
	% WLL	23	38	55	47	29	18
Max. Surfen	m	0.71	0.98	0.78	0.74	0.88	0.35
Max. Driften	m	0.19	0.73	1.19	1.04	0.44	0.12
Verschiedene Kriterien	%	35	49	60	52	44	18

DMA-Sensitivitätsanalyse – Anordnung 3.2 und Anordnung 4.2

8- Anordnung 2.2 und Anordnung 5.2:Die Analyse verschiedener Läufe ergab Option 5.2 als bevorzugte Vertäuanordnung. Bei dieser Anordnung können zwei weitere Leinen mit den verfügbaren Winden als Vorspring (1 zusätzliche Leine) und als Achterspring (1 zusätzliche Leine) vertäut werden. Den Ergebnissen zufolge werden mit der Anordnung 5.2 die maximalen Leinenlasten im Vergleich zur Anordnung 2.2 reduziert.

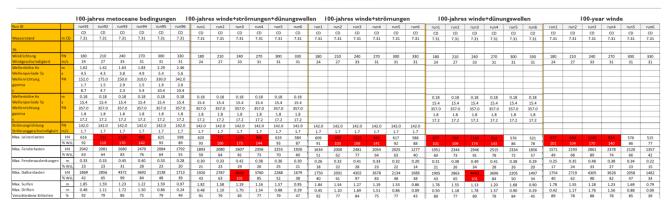
Vertäuungslayout option 2.2 18 leinen

(4-3-22-3-4)

Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m) 100-jahres metoceane bedingungen 22 m leinenendes

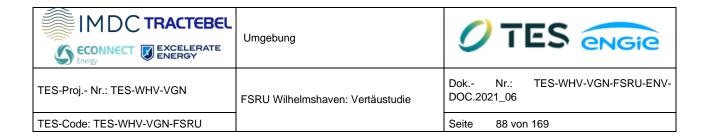
Vertäuungslayout option 5.2 20 leinen

 $(4-3-2\ 3-4-4)$


Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m) 100-jahres metoceane bedingungen 22 m leinenendes

Run ID		run91	run92	run93	run94	run95	run96	Run ID		run91	run92	run93	run94	run95	run96
		CD	CD	CD	CD	CD	CD			CD	CD	CD	CD	CD	CD
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31	Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31
TR								TR							
Windrichtung	∘N	180	210	240	270	300	330	Windrichtung	δN	180	210	240	270	300	330
Windgeschwindigkeit	m/s	24	27	33	31	31	31	Windgeschwindigkeit	m/s	24	27	33	31	31	31
Wellenhöhe Hs	m	1.62	1.42	1.63	1.83	2.29	2.46	Wellenhöhe Hs	m	1.62	1.42	1.63	1.83	2.29	2.46
Wellenperiode Tp	s	4.5	4.3	3.8	4.9	5.4	5.6	Wellenperiode Tp	s	4.5	4.3	3.8	4.9	5.4	5.6
Wellenrichtung	٥N	152.0	175.0	250.0	310.0	330.0	342.0	Wellenrichtung	δN	152.0	175.0	250.0	310.0	330.0	342.0
gamma		1.7	1.5	2.9	1.5	1.9	2.0	gamma		1.7	1.5	2.9	1.5	1.9	2.0
s		8.7	4.7	2.3	5.4	10.4	10.4	S		8.7	4.7	2.3	5.4	10.4	10.4
Wellenhöhe Hs	m	0.18	0.18	0.18	0.18	0.18	0.18	Wellenhöhe Hs	m	0.18	0.18	0.18	0.18	0.18	0.18
Wellenperiode Tp	s	15.4	15.4	15.4	15.4	15.4	15.4	Wellenperiode Tp	s	15.4	15.4	15.4	15.4	15.4	15.4
Wellenrichtung	δN	357.0	357.0	357.0	357.0	357.0	357.0	Wellenrichtung	δN	357.0	357.0	357.0	357.0	357.0	357.0
gamma		1.8	1.8	1.8	1.8	1.8	1.8	gamma		1.8	1.8	1.8	1.8	1.8	1.8
s		17.2	17.2	17.2	17.2	17.2	17.2	S		17.2	17.2	17.2	17.2	17.2	17.2
Strömungrichtung	ºN	142.0	142.0	142.0	142.0	142.0	142.0	Strömungrichtung	δN	142.0	142.0	142.0	142.0	142.0	142.0
Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7	Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7
Max. Leinenlasten	kN	674	770	1168	908	705	612	Max. Leinenlasten	kN	616	733	1138	950	625	598
	% WLL				136	105	92		% WLL	92	110	170	142	93	89
Max. Fenderlasten	kN	1940	2126	2880	2301	1892	1854	Max. Fenderlasten	kN	2042	2081	2680	2470	2084	1792
	% WLL	60	66	89	71	59	57		% WLL	63	64	83	76	64	55
Max. Fenderauslenkungen	m	0.31	0.34	0.48	0.37	0.30	0.29	Max. Fenderauslenkungen	m	0.33	0.33	0.45	0.40	0.33	0.28
	% WLL	21	23	34	26	21	20		% WLL	23	23	31	28	23	20
Max. Dalbenlasten	kN	1948	2991	4233	3531	1993	1222	Max. Dalbenlasten	kN	1869	2856	4372	3692	2138	1713
	% WLL	44	68	96	80	45	28		% WLL	42	65	99	84	48	39
Max. Surfen	m	1.37	1.14	0.53	0.97	2.01	0.95	Max. Surfen	m	1.85	1.59	1.23	1.22	1.59	0.97
Max. Driften	m	0.44	1.18	1.78	1.58	0.86	0.22	Max. Driften	m	0.48	1.11	1.72	1.50	0.86	0.24
Verschiedene Kriterien	%	69	59	89	79	100	47	Verschiedene Kriterien	%	92	79	86	75	79	49

DMA-Sensitivitätsanalyse – Anordnung 2.2 und Anordnung 5.2


9- <u>Auswirkung von Wind, Windwellen, Dünung und Strömung:</u> Um die Auswirkungen der einzelnen einwirkenden metoceanen Bedingungen zu verstehen, wurden Wind, Windwellen, Dünung und Strömungen in diesem Schritt einzeln simuliert. Auch hier sind die auftretenden Leinenlasten den Ergebnissen zufolge hauptsächlich auf den Windeffekt zurückzuführen; in Kombination mit den anderen Bedingungen fallen die Lasten sogar geringer aus.

Vertäuungslayout option 5.2 20 leinen (4-3-2 3-4-4) Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m) 22 m leinenendes

DMA-Sensitivitätsanalyse – Auswirkung von Wind, Windwellen, Dünung und Strömung

10- <u>Strömungen:</u> Es wurden Simulationen mit Strömungsgeschwindigkeiten von 1,7 und 2 m/s durchgeführt. Die Ergebnisse erbrachten keinen signifikanten Unterschied.

<u>Vertäuungslayout option 5.2 20 leinen</u> (4-3-2 3-4-4) Ballastierten FSRU 100-Jahres-HW (MSL+4,84 m) 22 m leinenendes

100-jahres metoceane bedingungen 1.7 m/s strömungen

100-jahres metoceane bedingungen 2 m/s strömungen

Run ID		run91	run92	run93	run94	run95	run96	Run ID		run91	run92	run93	run94	run95	run96
		CD	CD	CD	CD	CD	CD			CD	CD	CD	CD	CD	CD
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31	Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31
TR								TR							
Windrichtung	δN	180	210	240	270	300	330	Windrichtung	δN	180	210	240	270	300	330
Windgeschwindigkeit	m/s	24	27	33	31	31	31	Windgeschwindigkeit	m/s	24	27	33	31	31	31
Wellenhöhe Hs	m	1.62	1.42	1.63	1.83	2.29	2.46	Wellenhöhe Hs	m	1.62	1.42	1.63	1.83	2.29	2.46
Wellenperiode Tp	s	4.5	4.3	3.8	4.9	5.4	5.6	Wellenperiode Tp	s	4.5	4.3	3.8	4.9	5.4	5.6
Wellenrichtung	δN	152.0	175.0	250.0	310.0	330.0	342.0	Wellenrichtung	δN	152.0	175.0	250.0	310.0	330.0	342.0
gamma		1.7	1.5	2.9	1.5	1.9	2.0	gamma		1.7	1.5	2.9	1.5	1.9	2.0
s		8.7	4.7	2.3	5.4	10.4	10.4	S		8.7	4.7	2.3	5.4	10.4	10.4
Wellenhöhe Hs	m	0.18	0.18	0.18	0.18	0.18	0.18	Wellenhöhe Hs	m	0.18	0.18	0.18	0.18	0.18	0.18
Wellenperiode Tp	s	15.4	15.4	15.4	15.4	15.4	15.4	Wellenperiode Tp	s	15.4	15.4	15.4	15.4	15.4	15.4
Wellenrichtung	ōΝ	357.0	357.0	357.0	357.0	357.0	357.0	Wellenrichtung	δN	357.0	357.0	357.0	357.0	357.0	357.0
gamma		1.8	1.8	1.8	1.8	1.8	1.8	gamma		1.8	1.8	1.8	1.8	1.8	1.8
s		17.2	17.2	17.2	17.2	17.2	17.2	S		17.2	17.2	17.2	17.2	17.2	17.2
Strömungrichtung	δN	142.0	142.0	142.0	142.0	142.0	142.0	Strömungrichtung	δN	142.0	142.0	142.0	142.0	142.0	142.0
Strömunggeschwindigkeit	m/s	1.7	1.7	1.7	1.7	1.7	1.7	Strömunggeschwindigkeit	m/s	2.0	2.0	2.0	2.0	2.0	2.0
Max. Leinenlasten	kN	616	733	1138	950	625	598	Max. Leinenlasten	kN	586	732	1137	952	648	631
	% WLL	92	110		142	93	89		% WLL	88	109	170	142	97	94
Max. Fenderlasten	kN	2042	2081	2680	2470	2084	1792	Max. Fenderlasten	kN	2098	2033	2591	2446	2062	1814
	% WLL	63	64	83	76	64	55		% WLL	65	63	80	76	64	56
Max. Fenderauslenkungen	m	0.33	0.33	0.45	0.40	0.33	0.28	Max. Fenderauslenkungen	m	0.34	0.32	0.43	0.40	0.33	0.29
	% WLL	23	23	31	28	23	20		% WLL	23	22	30	28	23	20
Max. Dalbenlasten	kN	1869	2856	4372	3692	2138	1713	Max. Dalbenlasten	kN	1857	2843	4401	3710	2178	1804
	% WLL	42	65	99	84	48	39		% WLL	42	64	100	84	49	41
Max. Surfen	m	1.85	1.59	1.23	1.22	1.59	0.97	Max. Surfen	m	1.86	1.58	1.30	1.25	1.58	0.99
Max. Driften	m	0.48	1.11	1.72	1.50	0.86	0.24	Max. Driften	m	0.50	1.10	1.70	1.49	0.86	0.24
Verschiedene Kriterien	%	92	79	86	75	79	49	Verschiedene Kriterien	%	93	79	85	75	79	50

DMA-Sensitivitätsanalyse – Strömungen

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 89 von 169

11- Verbesserte Bewegungsergebnisse bei beladener FSRU: Es wurden Simulationen für die Anordnungsoption 5.2 durchgeführt. Die Leinenlasten fallen bei beladener FSRU bei hundertjährlichem Hochwasserstand niedriger aus. Die maximalen Bewegungen aber sind ähnlich. Die Leinenlasten sind bei Belastung identisch, wenn man den hundertjährlichen Hochwasserstand und SKN bei Windbedingungen aus 300° N und Strömungen Richtung 142° N vergleicht. Aber die Bewegungen nehmen zu (Schnellen zwischen 1,9 und 2,41 m). Beladen hat die FSRU eine höhere Trägheit, sodass es bei niedrigeren Leinenlasten bei hundertjährlichem Hochwasserstand zu ähnlichen Bewegungen kommt. Darüber hinaus haben die Strömungen bei Wasserstand SKN eine stärkere Wirkung. Damit verstärkt die Zunahme der Bewegungen sich weiter, wenn Wind und Strömungen bei diesem Wasserstand aus derselben Richtung kommen.

	BALLASTIERTEN FSRU 100-JAHRES-HW (MSL+4,84 M) run97 run98 run99 run100 run101 run102 run103 run104 run105 run106 run107																BELAD	ENEN F	SRU 100	JAHR	ES-HW (MSL+4,	84 M)		BELADENEN FSRU 100-JAHRES-HW (MSL+4,84 M) 7 run108 run97 run98 run99 run100 run101 run102 run103 run104 run105 run106 run107 run108								RU CD				
Run ID		run97	run98	run99	run100	run101	run102	run103	run104	run105	run106	run107	run108	run97	run98	run99	run100	run101	run102	run103	run104	run105	run106	run107	run108	run97	run98	run99 r	run100	run101	run102	run103	run104	run105	run106	run107	run108
TR		100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
		CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD	CD
Wasserstand	m CD	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31	7.31												
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	240	270	300	330	0	30	60	90	120	150	180	210	240	270	300	330	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	30	24	21	24	21	20	24	27	33	31	31	31	30	24	21	24	21	20	24	27	33	31	31	31	30	24	21	24	21	20	24	27	33	31	31	31
Wellenhöhe Hs	m	2.55	2.20	2.01	2.05	1.65	1.34	1.62	1.42	1.63	1.83	2.29	2.46	2.55	2.20	2.01	2.05	1.65	1.34	1.62	1.42	1.63	1.83	2.29	2.46	2.55	2.20	2.01	2.05	1.65	1.34	1.62	1.42	1.63	1.83	2.29	2.46
Wellenperiode Tp	s	5.5	5.2	5.0	5.0	4.4	4.2	4.5	4.3	3.8	4.9	5.4	5.6	5.5	5.2	5.0	5.0	4.4	4.2	4.5	4.3	3.8	4.9	5.4	5.6	5.5	5.2	5.0	5.0	4.4	4.2	4.5	4.3	3.8	4.9	5.4	5.6
Wellenrichtung	ōΝ	358.0	25.0	55.0	78.0	109.0	139.0	152.0	175.0	250.0	310.0	330.0	342.0	358.0	25.0	55.0	78.0	109.0	139.0	152.0	175.0	250.0	310.0	330.0	342.0	358.0	25.0	55.0	78.0	109.0	139.0	152.0	175.0	250.0	310.0	330.0	342.0
gamma		2.3	2.8	3.3	3.4	3.5	2.4	1.7	1.5	2.9	1.5	1.9	2.0	2.3	2.8	3.3	3.4	3.5	2.4	1.7	1.5	2.9	1.5	1.9	2.0	2.3	2.8	3.3	3.4	3.5	2.4	1.7	1.5	2.9	1.5	1.9	2.0
S		7.4	5.4	6.3	6.3	5.4	8.7	8.7	4.7	2.3	5.4	10.4	10.4	7.4	5.4	6.3	6.3	5.4	8.7	8.7	4.7	2.3	5.4	10.4	10.4	7.4	5.4	6.3	6.3	5.4	8.7	8.7	4.7	2.3	5.4	10.4	10.4
Wellenhöhe Hs	m	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35	0.35
Wellenperiode Tp	s	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7	8.7
Wellenrichtung	δN	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0	358.0
gamma		1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
S	_	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6	12.6
Strömungrichtung	ōΝ	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0	142.0
Strömunggeschwindigkeit	m/s	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Max. Leinenlasten	kN	446	211	141	173	205	207	635	958	1394	1091	784	742	427	197	139	151	187	212	648	826	1164	1026	714	711	392	171	168	220	265	308	508	700	995	932	711	724
	% WL	67	32	21	26	31	31	95	143	208	163	117	111	64	29	21	23	28	32	97	123	174	153	107	106	59	26	25	33	40	46	76	105	149	139	106	108
Max. Fenderlasten	kN	3271	3249	3186	4259	2525	1094	2403	2520	3169	2385	2451	1607	2569	2486	2748	3729	2208	1018	2095	1751	1556	2319	2172	1204	2249	2473	2861	3700	2213	965	557	0	0	0	684	1175
	% WLI	65	65	64	85	50	22	48	50	63	48	49	32	51	50	55	75	44	20	42	35	31	46	43	24	45	49	57	74	44	19	11	0	0	0	14	24
Max. Fenderauslenkungen	m	0.43	0.43	0.42	0.57	0.33	0.14	0.31	0.33	0.41	0.31	0.32	0.21	0.33	0.32	0.36	0.49	0.28	0.13	0.27	0.23	0.20	0.30	0.28	0.16	0.29	0.32	0.37	0.49	0.28	0.13	0.07	0.00	0.00	0.00	0.09	0.15
	% WL	30	30	29	39	23	10	22	23	29	21	22	14	23	22	25	34	20	9	19	16	14	21	19	11	20	22	26	34	20	9	5	0	0	0	6	11
Max. Dalbenlasten	kN	1288	613	513	551	485	543	2475	3676	5381	4279	2679	2118	1235	611	551	552	482	453	2526	3151	4446	4035	2704	2027	1134	647	655	769	698	621	1894	2735	3774	3638	2559	2066
	% WL	22	10	9	9	8	9	42	62	91	73	46	36	21	10	9	9	8	8	43	54	76	69	46	34	19	11	11	13	12	11	32	46	64	62	43	35
Max. Surfen	m		0.25		0.28	0.21	0.34	1.86	1.52	1.32	1.35	1.86	1.20	0.55	_	0.21	0.20	0.25	0.47	1.99	1.64	1.22	1.36	1.90	1.39		0.29	0.19	0.28	0.29	0.68	1.69	1.03	1.01	1.27	2.41	1.78
Max. Driften	m		0.31	0.27	0.26	0.15	0.10	0.68	1.26	1.81	1.50	0.97	0.18	0.44	0.42	0.36	0.34	0.16	0.09	0.56	1.02	1.48	1.34	0.99	0.21	0.22	0.21	0.20	0.18	0.08	0.06	0.40	0.74	1.17	0.97	0.72	0.17
Verschiedene Kriterien	%	15	16	14	13	8	11	62	63	91	75	62	40	22	21	18	17	8	16	66	55	74	67	63	46	17	11	10	9	10	23	56	37	59	49	80	59

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 90 von 169

Anhang D Ergebnisse für die FSRU

Die gelb eingefärbten Zellen zeigen die interpolierten Szenarien, mit denen die Grenzbedingungen gemäß den Kriterien für die maximale Leinenlast ermittelt werden. Rot eingefärbte Zellen zeigen an, wenn die Grenzwertkriterien überschritten werden.

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 91 von 169

FSRU in Ballast bei Wasserstand SKN

	Run ID		run1	run2	run3	run4	run5	run6	run7	run12	run13	1	run14	run17	run18	run19	2	run20	run22	run23	3	run24	run25	run27	run32
	Wasserstand	m CD																							
	TR		100	100	100	100	100	100	100	100	50	27	20	100	50	20	13	10	100	50	41	20	10	100	100
	Windrichtung	οN	0	30	60	90	120	150	180	210	210	210	210	240	240	240	240	240	270	270	270	270	270	300	330
	Windgeschwindigkeit	m/s	27	23	18	21	18	17	22	24	23	22	21	26	25	23	22	22	26	25	24	23	21	27	28
	Wellenhöhe Hs	m	2,08	1,62	1,18	1,32	1,13	0,98	1,30	1,17	1,11	1,05	1,04	1,02	0,97	0,90	0,86	0,84	1,33	1,26	1,23	1,17	1,09	1,83	2,10
	Wellenperiode Tp	S	5,1	4,4	3,8	3,8	3,7	3,7	4,1	3,8	3,7	3,6	3,6	3,0	2,9	2,9	2,8	2,8	4,3	4,2	4,2	4,1	4,0	4,9	5,2
	Wellenrichtung	ōΝ	347,2	9,4	51,1	94,2	122,8	138,8	150,7	171,0	171,1	171,3	171,4	239,5	239,6	239,8	239,8	239,8	314,3	314,2	314,1	313,9	313,5	333,5	339,0
	gamma		2,3	2,8	3,3	3,4	3,5	2,4	1,7	1,5	1,5	1,5	1,5	2,9	2,8	2,8	2,8	2,8	1,5	1,6	1,6	1,7	1,7	1,9	2,0
	S		9,6	5,4	5,5	5,7	7,5	10,3	7,9	4,5	4,5	4,5	4,5	1,9	1,9	2,0	2,0	2,0	4,9	4,8	4,8	4,8	4,8	11,5	13,7
	Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
	Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
	Wellenrichtung	oN	357,0	357,0	357,0		357,0		357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
	gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
	S Clair and a distribution of	011	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
NANY	Strömungrichtung Strömunggeschwindigkeit	ºN m/s																							
	Max. Leinenlasten	kN	312	241	243	265	259	266	535	835	751	669	646	934	878	706	669	649	777	702	669	590	496	562	497
551	IVIAX. ECITICITIASCET	% WLL	47	36	36	40	39	40	80	125	112	100	97	140	131	106	100	97	116	105	100	88	74	84	74
3548	Max. Fenderlasten	kN	3548	3248	2737	3078	2314	2124	2321	2499	2400	2260	2221	2305	2609	2322	2196	2129	2413	2426	2371	2239	2145	2540	2648
		% WLL	84	77	65	73	55	50	55	59	57	53	53	54	62	55	52	50	57	57	56	53	51	60	63
0,40	Max. Fenderauslenkungen	m	0,40	0,33	0,25	0,30	0,20	0,18	0,20	0,22	0,21	0,19	0,19	0,20	0,24	0,20	0,19	0,18	0,21	0,21	0,21	0,19	0,18	0,23	0,24
		% WLL	22	18	14	17	11	10	11	12	12	11	11	11	13	11	10	10	12	12	12	11	10	13	13
3334	Max. Dalbenlasten	kN	1124	954	942	989	898	1039	2070	2828	2550	2293	2220	3334	2941	2440	2294	2217	3040	2743	2617	2321	1950	1762	1346
		% WLL	19	16	16	17	15	18	35	48	43	39	38	57	50	41	39	38	52	47	44	39	33	30	23
-,-	Max. Surfen	m	0,57	0,24	0,10	0,35	0,46	0,43	0,82	0,57	0,50	0,43	0,41	0,40	0,36	0,31	0,27	0,25	0,49	0,44	0,42	0,37	0,34	0,92	0,83
	Max. Driften	m	0,39	0,33	0,23	0,22	0,19	0,20	0,36	0,97	0,87	0,77	0,74	1,32	1,22	1,02	0,94	0,91	1,09	0,98	0,93	0,82	0,70	0,43	0,21
0,07	Max. Tauchen	m	0,07	0,06	0,06	0,06	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,06	0,07	0,07
	Verschiedene Kriterien	%	19	11	8	12	15	14	27	32	29	26	25	44	41	34	31	30	36	33	31	27	23	31	28

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 92 von 169

Run ID		run37	run38	run39	run40	run41	run42	run43	run48	run49	4	run50	run53	run54	run55	5	run56	run58	run59	6	run60	run63	run68
Wasserstand	m CD																						
TR		100	100	100	100	100	100	100	100	50	21	20	100	50	20	12	10	100	50	36	20	100	100
Windrichtung	∘N	0	30	60	90	120	150	180	210	210	210	210	240	240	240	240	240	270	270	270	270	300	330
Windgeschwindigkeit	m/s	27	23	18	21	18	17	22	24	23	22	21	26	25	23	22	22	26	25	24	23	27	28
Wellenhöhe Hs	m	2,08	1,62	1,18	1,32	1,13	0,98	1,30	1,17	1,11	1,04	1,04	1,02	0,97	0,90	0,85	0,84	1,33	1,26	1,22	1,17	1,83	2,10
Wellenperiode Tp	S	5,1	4,4	3,8	3,8	3,7	3,7	4,1	3,8	3,7	3,6	3,6	3,0	2,9	2,9	2,8	2,8	4,3	4,2	4,2	4,1	4,9	5,2
Wellenrichtung	ºN	347,2	9,4	51,1	94,2	122,8	138,8	150,7	171,0	171,1	171,4	171,4	239,5	239,6	239,8	239,8	239,8	314,3	314,2	314,0	313,9	333,5	339,
gamma		2,3	2,8	3,3	3,4	3,5	2,4	1,7	1,5	1,5	1,5	1,5	2,9	2,8	2,8	2,8	2,8	1,5	1,6	1,6	1,7	1,9	2,0
S		9,6	5,4	5,5	5,7	7,5	10,3	7,9	4,5	4,5	4,5	4,5	1,9	1,9	2,0	2,0	2,0	4,9	4,8	4,8	4,8	11,5	13,7
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,
Wellenrichtung	∘N	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	∘N	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	384	260	251	276	253	268	553	845	769	669	665	945	888	715	669	659	789	717	669	613	620	549
	% WLL	57	39	38	41	38	40	83	126	115	100	99	141	133	107	100	99	118	107	100	92	93	82
Max. Fenderlasten	kN	3524	3206	2710	3073	2309	2126	2325	2372	2271	2131	2126	2299	2498	2221	2116	2094	2414	2352	2313	2268	2575	259
	% WLL	83	76	64	73	55	50	55	56	54	50	50	54	59	53	50	50	57	56	55	54	61	61
Max. Fenderauslenkungen	m	0,39	0,32	0,24	0,30	0,20	0,18	0,20	0,21	0,20	0,18	0,18	0,20	0,22	0,19	0,18	0,18	0,21	0,21	0,20	0,20	0,23	0,23
	% WLL	22	18	14	17	11	10	11	11	11	10	10	11	12	11	10	10	12	11	11	11	13	13
Max. Dalbenlasten	kN	1176	1011	995	1055	967	998	2050	2850	2594	2277	2266	3352	2956	2474	2292	2255	3057	2770	2592	2389	1807	148
	% WLL	20	17	17	18	16	17	35	48	44	39	39	57	50	42	39	38	52	47	44	41	31	25
Max. Surfen	m	0,66	0,34	0,21	0,20	0,28	0,27	0,68	0,46	0,39	0,31	0,30	0,45	0,43	0,38	0,35	0,34	0,62	0,55	0,52	0,48	0,99	0,91
Max. Driften	m	0,38	0,33	0,23	0,22	0,19	0,19	0,36	0,95	0,85	0,73	0,73	1,30	1,19	0,99	0,91	0,89	1,07	0,96	0,89	0,80	0,42	0,23
Max. Tauchen	m	0,07	0,06	0,06	0,06	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07
Verschiedene Kriterien	%	22	11	8	7	9	9	23	32	28	24	24	43	40	33	30	30	36	32	30	27	33	30

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 93 von 169

Run ID		run73	run74	run75	run76	run77	run78	run79	run84	run85	7	run86	run89	run90	run91	8	run92	run94	9	run95	run99	run1
Wasserstand	m CD																					
TR		100	100	100	100	100	100	100	100	50	35	20	100	50	20	17	10	100	55	50	100	10
Windrichtung	οN	0	30	60	90	120	150	180	210	210	210	210	240	240	240	240	240	270	270	270	300	33
Windgeschwindigkeit	m/s	27	23	18	21	18	17	22	24	23	22	21	26	25	23	23	22	26	25	25	27	2
Wellenhöhe Hs	m	2,08	1,62	1,18	1,32	1,13	0,98	1,30	1,17	1,11	1,07	1,04	1,02	0,97	0,90	0,89	0,84	1,33	1,27	1,26	1,83	2,
Wellenperiode Tp	S	5,1	4,4	3,8	3,8	3,7	3,7	4,1	3,8	3,7	3,6	3,6	3,0	2,9	2,9	2,8	2,8	4,3	4,2	4,2	4,9	5
Wellenrichtung	∘N	347,2	9,4	51,1	94,2	122,8	138,8	150,7	171,0	171,1	171,3	171,4	239,5	239,6	239,8	239,8	239,8	314,3	314,2	314,2	333,5	33
gamma		2,3	2,8	3,3	3,4	3,5	2,4	1,7	1,5	1,5	1,5	1,5	2,9	2,8	2,8	2,8	2,8	1,5	1,6	1,6	1,9	2
S		9,6	5,4	5,5	5,7	7,5	10,3	7,9	4,5	4,5	4,5	4,5	1,9	1,9	2,0	2,0	2,0	4,9	4,8	4,8	11,5	13
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	1
Wellenrichtung	ōΝ	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	35
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15
Strömungrichtung	∘N	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	32
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1
Max. Leinenlasten	kN	269	228	231	333	378	363	543	801	723	669	617	902	845	686	669	626	737	669	661	490	4
	% WLL	40	34	34	50	56	54	81	120	108	100	92	135	126	103	100	94	110	100	99	73	6
Max. Fenderlasten	kN	3539	3250	2709	3079	2270	2062	2178	2443	2342	2257	2176	2191	2543	2276	2228	2108	2220	2220	2221	2361	26
	% WLL	. 84	77	64	73	54	49	52	58	55	53	51	52	60	54	53	50	52	53	53	56	(
Max. Fenderauslenkungen	m	0,39	0,33	0,24	0,30	0,20	0,17	0,19	0,22	0,20	0,19	0,19	0,19	0,23	0,20	0,19	0,18	0,19	0,19	0,19	0,21	0,
	% WLL	. 22	18	14	17	11	10	10	12	11	11	10	10	13	11	11	10	11	11	11	11	:
Max. Dalbenlasten	kN	1047	878	868	869	844	1095	2111	2826	2554	2378	2209	3171	2857	2341	2290	2162	2919	2648	2617	1713	1.
	% WLL	18	15	15	15	14	19	36	48	43	40	38	54	49	40	39	37	50	45	44	29	:
Max. Surfen	m	0,44	0,19	0,27	0,60	0,68	0,67	1,00	0,67	0,62	0,59	0,56	0,44	0,41	0,39	0,38	0,35	0,33	0,30	0,30	0,82	0
Max. Driften	m	0,39	0,33	0,23	0,22	0,20	0,20	0,37	0,97	0,87	0,81	0,75	1,32	1,21	1,01	0,98	0,91	1,09	1,00	0,99	0,44	0
Max. Tauchen	m	0,07	0,06	0,06	0,06	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,07	0,
Verschiedene Kriterien	%	15	11	9	20	23	22	33	32	29	27	25	44	40	34	33	30	36	33	33	27	:

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 94 von 169

FSRU in Ballast bei hundertjährlichem Hochwasserstand

Run ID		run1	run2	run3	run4	run5	run6	run7	run12	run13	1	run14	run17	run18	run19	2	run20	run22	run23	3	run24	run27	run32
Wasserstand	m CD	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16
TR		100	100	100	100	100	100	100	100	50	27	20	100	50	20	16	10	100	50	39	20	100	100
Windrichtung	∘N	0	30	60	90	120	150	180	210	210	210	210	240	240	240	240	240	270	270	270	270	300	330
Windgeschwindigkeit	m/s	27	23	18	21	18	17	22	24	23	22	21	26	25	23	22	22	26	25	24	23	27	28
Wellenhöhe Hs	m	2,08	1,62	1,18	1,32	1,13	0,98	1,30	1,17	1,11	1,05	1,04	1,02	0,97	0,90	0,88	0,84	1,33	1,26	1,23	1,17	1,83	2,10
Wellenperiode Tp	s	5,1	4,4	3,8	3,8	3,7	3,7	4,1	3,8	3,7	3,6	3,6	3,0	2,9	2,9	2,8	2,8	4,3	4,2	4,2	4,1	4,9	5,2
Wellenrichtung	οN	347,2	9,4	51,1	94,2	122,8	138,8	150,7	171,0	171,1	171,3	171,4	239,5	239,6	239,8	239,8	239,8	314,3	314,2	314,1	313,9	333,5	339,
gamma		2,3	2,8	3,3	3,4	3,5	2,4	1,7	1,5	1,5	1,5	1,5	2,9	2,8	2,8	2,8	2,8	1,5	1,6	1,6	1,7	1,9	2,0
s		9,6	5,4	5,5	5,7	7,5	10,3	7,9	4,5	4,5	4,5	4,5	1,9	1,9	2,0	2,0	2,0	4,9	4,8	4,8	4,8	11,5	13,7
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	₽N	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	οN																						
X Strömunggeschwindigkeit	m/s																						
3 Max. Leinenlasten	kN	305	203	209	224	235	237	540	842	762	669	641	923	858	700	669	630	787	710	669	597	563	510
	% WLL	46	30	31	33	35	35	81	126	114	100	96	138	128	105	100	94	118	106	100	89	84	76
5 Max. Fenderlasten	kN	3475	3158	2486	3004	2096	1853	2269	2462	2342	2230	2197	2381	2411	2260	2190	2104	2490	2476	2396	2254	2346	251
	% WLL	82	75	59	71	50	44	54	58	55	53	52	56	57	53	52	50	59	59	57	53	55	59
8 Max. Fenderauslenkungen	m	0,38	0,31	0,22	0,29	0,18	0,15	0,20	0,22	0,20	0,19	0,19	0,21	0,21	0,19	0,19	0,18	0,22	0,22	0,21	0,19	0,21	0,22
5	% WLL	21	17	12	16	10	8	11	12	11	11	10	11	12	11	10	10	12	12	12	11	11	12
9 Max. Dalbenlasten	kN	995	802	802	811	792	925	2087	2841	2577	2290	2204	3329	2947	2454	2365	2254	3094	2783	2627	2353	1747	137
	% WLL	17	14	14	14	13	16	35	48	44	39	37	57	50	42	40	38	53	47	45	40	30	23
9 Max. Surfen	m	0.64	0.24	0,10	0,38	0,43	0,42	0,87	0,59	0,52	0,45	0,44	0,40	0,38	0,32	0,29	0,26	0,49	0.46	0,44	0,39	0,99	0,93
4 Max. Driften	m	0,50	0,46	0,30	0,28	0,22	0,19	0,38	0,99	0,89	0,80	0,77	1,34	1,26	1,04	0,99	0,93	1,12	1,02	0,96	0,85	0,41	0,27
8 Max. Tauchen	m	0,07	0,08	0,07	0,07	0,08	0,07	0,08	0,07	0,07	0,07	0,07	0,08	0,08	0,08	0,08	0,08	0,07	0,07	0,07	0,08	0,07	0,08
Verschiedene Kriterien	%	21	15	10	13	14	14	29	33	30	27	26	45	42	35	33	31	37	34	32	28	33	31
versame acrie kriterien	70		1.5	10	13	14	17	23	33	30	21	20	73	¬∠	33	JJ	31	3,	54	JZ	20	3	

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 95 von 169

Run ID		run37	run38	run39	run40	run41	run42	run43	run48	run49	4	run50	run53	run54	run55	5	run56	run58	run59	6	run60	run63	run68
Wasserstand	m CD	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16
TR		100	100	100	100	100	100	100	100	50	22	20	100	50	20	14	10	100	50	34	20	100	100
Windrichtung	∘N	0	30	60	90	120	150	180	210	210	210	210	240	240	240	240	240	270	270	270	270	300	330
Windgeschwindigkeit	m/s	27	23	18	21	18	17	22	24	23	22	21	26	25	23	22	22	26	25	24	23	27	28
Wellenhöhe Hs	m	2,08	1,62	1,18	1,32	1,13	0,98	1,30	1,17	1,11	1,04	1,04	1,02	0,97	0,90	0,87	0,84	1,33	1,26	1,21	1,17	1,83	2,10
Wellenperiode Tp	S	5,1	4,4	3,8	3,8	3,7	3,7	4,1	3,8	3,7	3,6	3,6	3,0	2,9	2,9	2,8	2,8	4,3	4,2	4,1	4,1	4,9	5,2
Wellenrichtung	∘N	347,2	9,4	51,1	94,2	122,8	138,8	150,7	171,0	171,1	171,4	171,4	239,5	239,6	239,8	239,8	239,8	314,3	314,2	314,0	313,9	333,5	339,0
gamma		2,3	2,8	3,3	3,4	3,5	2,4	1,7	1,5	1,5	1,5	1,5	2,9	2,8	2,8	2,8	2,8	1,5	1,6	1,6	1,7	1,9	2,0
S		9,6	5,4	5,5	5,7	7,5	10,3	7,9	4,5	4,5	4,5	4,5	1,9	1,9	2,0	2,0	2,0	4,9	4,8	4,8	4,8	11,5	13,7
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	οN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	∘N	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	382	219	216	237	228	226	543	855	776	669	661	936	867	713	669	644	802	725	669	617	618	566
	% WLL	57	33	32	35	34	34	81	128	116	100	99	140	130	107	100	96	120	108	100	92	92	85
Max. Fenderlasten	kN	3456	3124	2455	2987	2078	1837	2284	2356	2252	2189	2184	2378	2343	2201	2090	2027	2479	2396	2319	2250	2371	2478
	% WLL	82	74	58	71	49	43	54	56	53	52	52	56	55	52	49	48	59	57	55	53	56	59
Max. Fenderauslenkungen	m	0,37	0,31	0,22	0,29	0,18	0,15	0,20	0,20	0,19	0,19	0,19	0,21	0,20	0,19	0,18	0,17	0,22	0,21	0,20	0,19	0,21	0,22
	% WLL	21	17	12	16	10	8	11	11	11	10	10	11	11	10	10	9	12	12	11	11	12	12
Max. Dalbenlasten	kN	1044	852	850	895	870	876	2056	2868	2610	2273	2249	3377	2991	2495	2367	2294	3116	2808	2598	2407	1779	1533
	% WLL	18	14	14	15	15	15	35	49	44	39	38	57	51	42	40	39	53	48	44	41	30	26
Max. Surfen	m	0,74	0,35	0,22	0,17	0,23	0,24	0,74	0,47	0,41	0,33	0,32	0,47	0,44	0,40	0,37	0,36	0,61	0,58	0,54	0,50	1,06	1,01
Max. Driften	m	0,50	0,46	0,30	0,28	0,22	0,19	0,38	0,97	0,88	0,77	0,76	1,33	1,24	1,03	0,96	0,92	1,10	1,00	0,91	0,83	0,39	0,27
Max. Tauchen	m	0,08	0,08	0,07	0,07	0,08	0,07	0,08	0,07	0,07	0,07	0,07	0,08	0,08	0,08	0,08	0,08	0,07	0,07	0,07	0,08	0,07	0,08
Verschiedene Kriterien	%	25	15	10	9	8	8	25	32	29	26	25	44	41	34	32	31	37	33	30	28	35	34

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 96 von 169

Run ID		run73	run74	run75	run76	run77	run78	run79	run84	run85	7	run86	run89	run90	run91	8	run92	run94	run95	9	run96	run99	run104
Wasserstand	m CD	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16
TR		100	100	100	100	100	100	100	100	50	35	20	100	50	20	18	10	100	50	48	20	100	100
Windrichtung	οN	0	30	60	90	120	150	180	210	210	210	210	240	240	240	240	240	270	270	270	270	300	330
Windgeschwindigkeit	m/s	27	23	18	21	18	17	22	24	23	22	21	26	25	23	23	22	26	25	24	23	27	28
Wellenhöhe Hs	m	2,08	1,62	1,18	1,32	1,13	0,98	1,30	1,17	1,11	1,07	1,04	1,02	0,97	0,90	0,89	0,84	1,33	1,26	1,26	1,17	1,83	2,10
Wellenperiode Tp	S	5,1	4,4	3,8	3,8	3,7	3,7	4,1	3,8	3,7	3,6	3,6	3,0	2,9	2,9	2,8	2,8	4,3	4,2	4,2	4,1	4,9	5,2
Wellenrichtung	οN	347,2	9,4	51,1	94,2	122,8	138,8	150,7	171,0	171,1	171,3	171,4	239,5	239,6	239,8	239,8	239,8	314,3	314,2	314,1	313,9	333,5	339,0
gamma		2,3	2,8	3,3	3,4	3,5	2,4	1,7	1,5	1,5	1,5	1,5	2,9	2,8	2,8	2,8	2,8	1,5	1,6	1,6	1,7	1,9	2,0
S		9,6	5,4	5,5	5,7	7,5	10,3	7,9	4,5	4,5	4,5	4,5	1,9	1,9	2,0	2,0	2,0	4,9	4,8	4,8	4,8	11,5	13,7
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	οN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0		357,0	357,0	357,0		357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōN	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7
(Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	235	190	195	326	356	347	551	799	722	669	613	898	829	680	669	611	754	674	669	577	484	425
	% WLL	35	28	29	49	53	52	82	119	108	100	92	134	124	102	100	91	113	101	100	86	72	63
Max. Fenderlasten	kN	3465	3154	2444	3029	2099	1775	2223	2397	2291	2198	2100	2288	2393	2230	2196	2015	2362	2279	2274	2188	2232	2462
	% WLL	82	75	58	72	50	42	53	57	54	52	50	54	57	53	52	48	56	54	54	52	53	58
Max. Fenderauslenkungen	m	0,37	0,31	0,22	0,29	0,18	0,14	0,19	0,21	0,20	0,19	0,18	0,20	0,21	0,19	0,19	0,17	0,21	0,20	0,20	0,19	0,19	0,22
	% WLL	21	17	12	16	10	8	11	12	11	10	10	11	12	11	10	9	11	11	11	10	11	12
1 Max. Dalbenlasten	kN	914	728	720	701	756	998	2145	2883	2591	2422	2245	3211	2835	2360	2330	2166	2972	2659	2638	2266	1698	1138
	% WLL	16	12	12	12	13	17	36	49	44	41	38	55	48	40	40	37	50	45	45	39	29	19
7 Max. Surfen	m	0,47	0,15	0,26	0,64	0,69	0,69	1,07	0,71	0,66	0,63	0,59	0,46	0,43	0,40	0,39	0,35	0,35	0,33	0,33	0,29	0,88	0,80
Max. Driften	m	0,49	0,46	0,30	0,28	0,22	0,19	0,39	0,99	0,90	0,84	0,77	1,35	1,26	1,05	1,03	0,93	1,12	1,03	1,02	0,87	0,43	0,27
Max. Tauchen	m	0,07	0,08	0,07	0,07	0,08	0,07	0,08	0,07	0,07	0,07	0,07	0,08	0,08	0,08	0,08	0,08	0,07	0,07	0,07	0,08	0,07	0,08
Verschiedene Kriterien	%	16	15	10	21	23	23	36	33	30	28	26	45	42	35	34	31	37	34	34	29	29	27

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 97 von 169

FSRU beladen bei Wasserstand SKN

	Run ID		run1	run2	run3	run4	run5	run6	run7	run12	run17	run18	1	run19	run22	run27	run32
	Wasserstand	m CD															
	TR		100	100	100	100	100	100	100	100	100	50	45	20	100	100	100
	Windrichtung	οN	0	30	60	90	120	150	180	210	240	240	240	240	270	300	330
	Windgeschwindigkeit	m/s	27	23	18	21	18	17	22	24	26	25	25	23	26	27	28
	Wellenhöhe Hs	m	2,08	1,62	1,18	1,32	1,13	0,98	1,30	1,17	1,02	0,97	0,96	0,90	1,33	1,83	2,10
	Wellenperiode Tp	S	5,1	4,4	3,8	3,8	3,7	3,7	4,1	3,8	3,0	2,9	2,9	2,9	4,3	4,9	5,2
	Wellenrichtung	∘N	347,2	9,4	51,1	94,2	122,8	138,8	150,7	171,0	239,5	239,6	239,6	239,8	314,3	333,5	339,0
	gamma		2,3	2,8	3,3	3,4	3,5	2,4	1,7	1,5	2,9	2,8	2,8	2,8	1,5	1,9	2,0
	S		9,6	5,4	5,5	5,7	7,5	10,3	7,9	4,5	1,9	1,9	1,9	2,0	4,9	11,5	13,7
	Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
	Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
	Wellenrichtung	∘N	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
	gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
	S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
	Strömungrichtung	∘N															
MAX	Strömunggeschwindigkeit	m/s															
722	Max. Leinenlasten	kN	286	219	203	230	254	247	447	612	722	690	669	565	569	463	419
		% WLL	43	33	30	34	38	37	67	91	108	103	100	84	85	69	63
3092	Max. Fenderlasten	kN	3092	2838	2559	2951	2485	1980	1864	1977	1868	1796	1793	1779	1945	1948	2152
		% WLL	73	67	60	70	59	47	44	47	44	42	42	42	46	46	51
0,30	Max. Fenderauslenkungen	m	0,30	0,26	0,23	0,28	0,22	0,17	0,15	0,16	0,15	0,14	0,14	0,14	0,16	0,16	0,18
		% WLL	17	15	13	16	12	9	8	9	8	8	8	8	9	9	10
2468	Max. Dalbenlasten	kN	899	803	784	789	848	967	1722	2151	2468	2354	2289	1980	2222	1471	1119
		% WLL	15	14	13	13	14	16	29	37	42	40	39	34	38	25	19
0,78	Max. Surfen	m	0,53	0,21	0,13	0,38	0,44	0,38	0,64	0,38	0,33	0,28	0,26	0,20	0,45	0,78	0,70
1,08	Max. Driften	m	0,33	0,30	0,22	0,19	0,14	0,13	0,26	0,79	1,08	0,98	0,95	0,83	0,89	0,33	0,18
0,09	Max. Tauchen	m	0,08	0,08	0,08	0,07	0,09	0,08	0,08	0,08	0,09	0,08	0,08	0,08	0,08	0,08	0,08
	Verschiedene Kriterien	%	18	10	7	13	15	13	21	26	36	33	32	28	30	26	23

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 98 von 169

Run ID		run37	run38	run39	run40	run41	run42	run43	run48	run53	run54	2	run55	run58	run63	run68
Wasserstand	m CD															
TR		100	100	100	100	100	100	100	100	100	50	41	20	100	100	100
Windrichtung	ōN	0	30	60	90	120	150	180	210	240	240	240	240	270	300	330
Windgeschwindigkeit	m/s	27	23	18	21	18	17	22	24	26	25	24	23	26	27	28
Wellenhöhe Hs	m	2,08	1,62	1,18	1,32	1,13	0,98	1,30	1,17	1,02	0,97	0,95	0,90	1,33	1,83	2,10
Wellenperiode Tp	S	5,1	4,4	3,8	3,8	3,7	3,7	4,1	3,8	3,0	2,9	2,9	2,9	4,3	4,9	5,2
Wellenrichtung	ōN	347,2	9,4	51,1	94,2	122,8	138,8	150,7	171,0	239,5	239,6	239,7	239,8	314,3	333,5	339,0
gamma		2,3	2,8	3,3	3,4	3,5	2,4	1,7	1,5	2,9	2,8	2,8	2,8	1,5	1,9	2,0
S		9,6	5,4	5,5	5,7	7,5	10,3	7,9	4,5	1,9	1,9	1,9	2,0	4,9	11,5	13,7
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	ōN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	∘N	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8
Strömunggeschwindigkeit Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	362	228	217	226	224	250	462	644	729	710	669	574	601	515	485
	% WLL	54	34	33	34	33	37	69	96	109	106	100	86	90	77	73
Max. Fenderlasten	kN	2976	2666	2595	2982	2524	1999	1860	1750	1696	1713	1664	1551	1721	1999	2095
	% WLL	70	63	61	71	60	47	44	41	40	41	39	37	41	47	50
Max. Fenderauslenkungen	m	0,28	0,24	0,23	0,28	0,22	0,17	0,15	0,14	0,13	0,14	0,13	0,12	0,14	0,17	0,18
	% WLL	16	13	13	16	12	9	8	8	7	8	7	7	8	9	10
Max. Dalbenlasten	kN	970	871	858	864	856	913	1701	2237	2484	2387	2265	1985	2318	1579	1303
	% WLL	16	15	15	15	15	16	29	38	42	41	38	34	39	27	22
Max. Surfen	m	0,63	0,32	0,22	0,21	0,27	0,21	0,53	0,28	0,41	0,39	0,38	0,36	0,55	0,85	0,80
7 Max. Driften	m	0,33	0,29	0,21	0,19	0,14	0,13	0,28	0,80	1,07	0,97	0,93	0,82	0,89	0,33	0,17
Max. Tauchen	m	0,08	0,08	0,08	0,08	0,09	0,08	0,08	0,08	0,09	0,08	0,08	0,08	0,08	0,08	0,08
Verschiedene Kriterien	%	21	11	7	7	9	7	18	27	36	32	31	27	30	28	27

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 99 von 169

Run ID		run73	run74	run75	run76	run77	run78	run79	run84	run89	3	run90	run94	run99	run104
Wasserstand	m CD														
TR		100	100	100	100	100	100	100	100	100	77	50	100	100	100
Windrichtung	∘N	0	30	60	90	120	150	180	210	240	240	240	270	300	330
Windgeschwindigkeit	m/s	27	23	18	21	18	17	22	24	26	26	25	26	27	28
Wellenhöhe Hs	m	2,08	1,62	1,18	1,32	1,13	0,98	1,30	1,17	1,02	1,00	0,97	1,33	1,83	2,10
Wellenperiode Tp	S	5,1	4,4	3,8	3,8	3,7	3,7	4,1	3,8	3,0	3,0	2,9	4,3	4,9	5,2
Wellenrichtung	οN	347,2	9,4	51,1	94,2	122,8	138,8	150,7	171,0	239,5	239,5	239,6	314,3	333,5	339,0
gamma		2,3	2,8	3,3	3,4	3,5	2,4	1,7	1,5	2,9	2,9	2,8	1,5	1,9	2,0
S		9,6	5,4	5,5	5,7	7,5	10,3	7,9	4,5	1,9	1,9	1,9	4,9	11,5	13,7
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	∘N	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōN	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	263	211	191	305	337	306	464	618	686	669	649	531	422	355
	% WLL	39	31	28	46	50	46	69	92	103	100	97	79	63	53
Max. Fenderlasten	kN	3107	2882	2313	2797	2243	1738	1600	1816	1555	1527	1496	1588	1596	2153
	% WLL	73	68	55	66	53	41	38	43	37	36	35	38	38	51
Max. Fenderauslenkungen	m	0,31	0,27	0,20	0,26	0,19	0,14	0,13	0,15	0,12	0,12	0,12	0,13	0,13	0,18
	% WLL	17	15	11	14	11	8	7	8	7	7	7	7	7	10
Max. Dalbenlasten	kN	880	790	749	776	902	1027	1810	2219	2378	2314	2241	2100	1352	965
	% WLL	15	13	13	13	15	17	31	38	40	39	38	36	23	16
Max. Surfen	m	0,43	0,13	0,23	0,55	0,61	0,56	0,81	0,52	0,39	0,36	0,34	0,31	0,72	0,62
Max. Driften	m	0,34	0,31	0,22	0,19	0,15	0,13	0,27	0,80	1,09	1,04	0,99	0,90	0,34	0,18
Max. Tauchen	m	0,08	0,08	0,08	0,08	0,09	0,08	0,08	0,08	0,09	0,09	0,08	0,08	0,08	0,08
Verschiedene Kriterien	%	14	10	8	18	20	19	27	27	36	35	33	30	24	21

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 100 von 169

FSRU beladen bei hundertjährlichem Hochwasserstand

	Run ID		run1	run2	run3	run4	run5	run6	run7	run12	1	run13	run17	run18	2	run19	run22	3	run23	run27	run32
	Wasserstand	m CD	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16
	TR		100	100	100	100	100	100	100	100	65	50	100	50	33	20	100	78	50	100	100
	Windrichtung	∘N	0	30	60	90	120	150	180	210	210	210	240	240	240	240	270	270	270	300	330
	Windgeschwindigkeit	m/s	27	23	18	21	18	17	22	24	23	23	26	25	24	23	26	25	25	27	28
	Wellenhöhe Hs	m	2,08	1,62	1,18	1,32	1,13	0,98	1,30	1,17	1,13	1,11	1,02	0,97	0,93	0,90	1,33	1,30	1,26	1,83	2,10
	Wellenperiode Tp	S	5,1	4,4	3,8	3,8	3,7	3,7	4,1	3,8	3,7	3,7	3,0	2,9	2,9	2,9	4,3	4,2	4,2	4,9	5,2
	Wellenrichtung	∘N	347,2	9,4	51,1	94,2	122,8	138,8	150,7	171,0	171,1	171,1	239,5	239,6	239,7	239,8	314,3	314,2	314,2	333,5	339,0
	gamma		2,3	2,8	3,3	3,4	3,5	2,4	1,7	1,5	1,5	1,5	2,9	2,8	2,8	2,8	1,5	1,5	1,6	1,9	2,0
	S		9,6	5,4	5,5	5,7	7,5	10,3	7,9	4,5	4,5	4,5	1,9	1,9	1,9	2,0	4,9	4,9	4,8	11,5	13,7
	Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
	Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
	Wellenrichtung	οN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
	gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
	S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
	Strömungrichtung	οN																			
MAX	Strömunggeschwindigkeit	m/s																			
864	Max. Leinenlasten	kN	316	200	193	181	221	246	485	735	669	640	864	738	669	615	703	669	624	464	468
		% WLL	47	30	29	27	33	37	73	110	100	96	129	110	100	92	105	100	93	69	70
3292	Max. Fenderlasten	kN	3292	2967	2482	3072	2634	2041	2083	2700	2630	2599	2837	2847	2677	2546	2682	2617	2532	2137	2377
		% WLL	78	70	59	73	62	48	49	64	62	61	67	67	63	60	63	62	60	51	56
0,34	Max. Fenderauslenkungen	m	0,34	0,28	0,22	0,30	0,24	0,17	0,18	0,24	0,23	0,23	0,26	0,26	0,24	0,23	0,24	0,23	0,22	0,18	0,21
		% WLL	19	16	12	17	13	10	10	13	13	13	14	15	13	13	13	13	12	10	12
2908	Max. Dalbenlasten	kN	866	718	742	666	803	933	1867	2510	2302	2211	2908	2523	2295	2118	2770	2637	2465	1643	1257
		% WLL	15	12	13	11	14	16	32	43	39	38	49	43	39	36	47	45	42	28	21
0,85	Max. Surfen	m	0,66	0,32	0,20	0,33	0,43	0,33	0,71	0,48	0,44	0,42	0,31	0,28	0,25	0,23	0,39	0,38	0,38	0,83	0,85
1,23	Max. Driften	m	0,64	0,61	0,46	0,41	0,25	0,20	0,34	0,87	0,81	0,78	1,23	1,09	0,99	0,90	1,00	0,96	0,90	0,40	0,33
0,11	Max. Tauchen	m	0,10	0,10	0,10	0,10	0,11	0,10	0,11	0,10	0,10	0,10	0,11	0,11	0,11	0,11	0,10	0,10	0,11	0,10	0,10
	Verschiedene Kriterien	%	22	20	15	14	14	11	24	29	27	26	41	36	33	30	33	32	30	28	28

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 101 von 169

Run ID		run37	run38	run39	run40	run41	run42	run43	run48	4	run49	run53	run54	5	run55	run58	6	run59	run63	run68
Wasserstand	m CD	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16
TR		100	100	100	100	100	100	100	100	53	50	100	50	33	20	100	66	50	100	100
Windrichtung	οN	0	30	60	90	120	150	180	210	210	210	240	240	240	240	270	270	270	300	330
Windgeschwindigkeit	m/s	27	23	18	21	18	17	22	24	23	23	26	25	24	23	26	25	25	27	28
Wellenhöhe Hs	m	2,08	1,62	1,18	1,32	1,13	0,98	1,30	1,17	1,12	1,11	1,02	0,97	0,93	0,90	1,33	1,28	1,26	1,83	2,10
Wellenperiode Tp	S	5,1	4,4	3,8	3,8	3,7	3,7	4,1	3,8	3,7	3,7	3,0	2,9	2,9	2,9	4,3	4,2	4,2	4,9	5,2
Wellenrichtung	∘N	347,2	9,4	51,1	94,2	122,8	138,8	150,7	171,0	171,1	171,1	239,5	239,6	239,7	239,8	314,3	314,2	314,2	333,5	339,0
gamma		2,3	2,8	3,3	3,4	3,5	2,4	1,7	1,5	1,5	1,5	2,9	2,8	2,8	2,8	1,5	1,6	1,6	1,9	2,0
S		9,6	5,4	5,5	5,7	7,5	10,3	7,9	4,5	4,5	4,5	1,9	1,9	1,9	2,0	4,9	4,9	4,8	11,5	13,7
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	οN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	∘N	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	408	213	202	192	203	257	503	758	669	663	851	729	669	625	716	669	647	523	536
	% WLL	61	32	30	29	30	38	75	113	100	99	127	109	100	93	107	100	97	78	80
Max. Fenderlasten	kN	3197	2876	2501	3068	2594	2050	2025	2273	2246	2244	2394	2413	2295	2209	2471	2412	2386	2135	2246
	% WLL	76	68	59	73	61	48	48	54	53	53	57	57	54	52	58	57	56	50	53
Max. Fenderauslenkungen	m	0,32	0,27	0,22	0,30	0,23	0,17	0,17	0,20	0,19	0,19	0,21	0,21	0,20	0,19	0,22	0,21	0,21	0,18	0,19
	% WLL	18	15	12	17	13	10	9	11	11	11	12	12	11	10	12	12	12	10	11
1 Max. Dalbenlasten	kN	1090	772	800	728	769	882	1814	2551	2268	2251	2891	2502	2360	2256	2785	2591	2502	1722	1449
	% WLL	19	13	14	12	13	15	31	43	39	38	49	43	40	38	47	44	43	29	25
6 Max. Surfen	m	0,79	0,46	0,34	0,15	0,20	0,20	0,55	0,36	0,33	0,32	0,44	0,39	0,38	0,37	0,54	0,52	0,51	0,93	0,96
2 Max. Driften	m	0,65	0,62	0,46	0,41	0,25	0,20	0,34	0,88	0,78	0,77	1,22	1,08	0,98	0,90	0,96	0,90	0,88	0,39	0,34
1 Max. Tauchen	m	0,10	0,10	0,10	0,10	0,11	0,10	0,11	0,10	0,10	0,10	0,11	0,11	0,11	0,11	0,10	0,11	0,11	0,10	0,10
Verschiedene Kriterien	%	26	21	15	14	8	7	18	29	26	26	41	36	33	30	32	30	29	31	32

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 102 von 169

Run ID		run73	run74	run75	run76	run77	run78	run79	run84	7	run85	run89	run90	8	run91	run94	run99	run104
Wasserstand	m CD	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16	7,16
TR		100	100	100	100	100	100	100	100	72	50	100	50	46	20	100	100	100
Windrichtung	ºN	0	30	60	90	120	150	180	210	210	210	240	240	240	240	270	300	330
Windgeschwindigkeit	m/s	27	23	18	21	18	17	22	24	24	23	26	25	25	23	26	27	28
Wellenhöhe Hs	m	2,08	1,62	1,18	1,32	1,13	0,98	1,30	1,17	1,14	1,11	1,02	0,97	0,96	0,90	1,33	1,83	2,10
Wellenperiode Tp	S	5,1	4,4	3,8	3,8	3,7	3,7	4,1	3,8	3,7	3,7	3,0	2,9	2,9	2,9	4,3	4,9	5,2
Wellenrichtung	ºN	347,2	9,4	51,1	94,2	122,8	138,8	150,7	171,0	171,1	171,1	239,5	239,6	239,6	239,8	314,3	333,5	339,0
gamma		2,3	2,8	3,3	3,4	3,5	2,4	1,7	1,5	1,5	1,5	2,9	2,8	2,8	2,8	1,5	1,9	2,0
S		9,6	5,4	5,5	5,7	7,5	10,3	7,9	4,5	4,5	4,5	1,9	1,9	1,9	2,0	4,9	11,5	13,7
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	ºN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ºN	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	221	178	184	271	320	296	478	724	669	626	790	681	669	582	642	424	388
	% WLL	33	27	27	40	48	44	72	108	100	94	118	102	100	87	96	63	58
Max. Fenderlasten	kN	3293	2978	2293	2914	2385	1756	2134	2308	2267	2235	2547	2434	2408	2225	2182	1879	2338
	% WLL	78	70	54	69	56	42	50	55	54	53	60	58	57	53	52	44	55
Max. Fenderauslenkungen	m	0,34	0,28	0,20	0,27	0,21	0,14	0,18	0,20	0,20	0,19	0,22	0,21	0,21	0,19	0,19	0,15	0,20
	% WLL	19	16	11	15	12	8	10	11	11	11	12	12	12	11	10	9	11
Max. Dalbenlasten	kN	777	664	688	691	828	989	1872	2520	2343	2204	2713	2359	2321	2051	2524	1556	1039
	% WLL	13	11	12	12	14	17	32	43	40	37	46	40	39	35	43	26	18
Max. Surfen	m	0,51	0,19	0,20	0,55	0,66	0,59	0,91	0,64	0,60	0,57	0,39	0,38	0,37	0,34	0,31	0,79	0,74
Max. Driften	m	0,65	0,61	0,45	0,41	0,25	0,19	0,33	0,91	0,85	0,81	1,23	1,10	1,08	0,94	1,00	0,41	0,32
Max. Tauchen	m	0,10	0,10	0,10	0,10	0,11	0,10	0,11	0,11	0,10	0,10	0,11	0,11	0,11	0,11	0,10	0,10	0,10
Verschiedene Kriterien	%	22	20	15	18	22	20	30	30	28	27	41	37	36	31	33	26	25

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 103 von 169

Anhang E Ergebnisse für den Schiff-zu-Schiff-Betrieb

Die gelb eingefärbten Zellen zeigen die interpolierten Szenarien, mit denen die Grenzbedingungen gemäß den Kriterien für die maximale Leinenlast ermittelt werden. Rot eingefärbte Zellen zeigen an, wenn die Grenzwertkriterien überschritten werden.

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 104 von 169

FSRU in Ballast und LNG-Tanker mit Membrantank 138 Tsd. beladen bei Wasserstand SKN

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 105 von 169

Run ID		run1	run6	run11	run16	run21	run26	run31	run36	run41	run46	run51	run!
Wasserstand	m CD												
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	oN	0	30	60	90	120	150	180	210	240	270	300	33
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	2:
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,6
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,
Wellenrichtung	ōN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,3
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12
Wellenrichtung	ōN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15
Strömungrichtung	ōN												
Strömunggeschwindigkeit	m/s												
Max. Leinenlasten	kN	408	325	341	357	363	344	421	509	505	484	427	46
FSRU	% WLL	61	49	51	53	54	51	63	76	76	72	64	6
Max. Fenderlasten	kN	3489	3397	3029	2774	2508	2427	2420	2263	2152	2143	2484	29
FSRU	% WLL	82	80	72	66	59	57	57	54	51	51	59	7
Max. Fenderauslenkungen	m	0,38	0,36	0,29	0,25	0,22	0,21	0,21	0,20	0,18	0,18	0,22	0,
FSRU	% WLL	21	20	16	14	12	12	12	11	10	10	12	1
Max. Dalbenlasten	kN	1355	1273	1304	1267	1204	1133	1554	1816	1949	1917	1648	15
FSRU	% WLL	23	22	22	22	20	19	26	31	33	33	28	2
Max. Surfen Hochdruckverteilers	m	0,50	0,31	0,29	0,49	0,53	0,50	0,50	0,40	0,36	0,38	0,53	0,
Max. Driften Hochdruckverteilers	m	0,53	0,55	0,56	0,56	0,57	0,62	0,74	0,86	0,98	0,89	0,71	0,
Max. Tauchen Hochdruckverteilers	m	0,20	0,20	0,20	0,20	0,19	0,19	0,18	0,18	0,18	0,19	0,18	0,:
Verschiedene Kriterien	%	18	18	19	19	19	21	25	29	33	30	24	2
Max. Leinenlasten	kN	599	540	536	484	493	522	559	547	556	604	588	59
LNGC	% WLL	90	81	80	72	74	78	84	82	83	90	88	9
Max. Fenderlasten	kN	958	945	404	302	273	243	263	487	631	492	308	38
Schwimmende	% WLL	29	28	12	9	8	7	8	15	19	15	9	1
Max. Fenderauslenkungen	m	1,03	1,03	0,54	0,42	0,38	0,34	0,37	0,62	0,75	0,62	0,43	0,
Schwimmende	% WLL	52	52	27	21	19	17	18	31	38	31	22	2
Max. Surfen relative STS	m	0,71	0,68	0,65	0,63	0,62	0,54	0,57	0,53	0,64	0,65	0,64	0,0
Max. Driften relative STS	m	0,56	0,52	0,37	0,42	0,39	0,40	0,47	0,50	0,56	0,58	0,46	0,4
Max. Tauchen relative STS	m	1,15	1,17	1,21	1,14	1,23	1,22	1,31	1,44	1,27	1,43	1,29	1,2
Verschiedene Kriterien	%	24	23	22	21	21	18	19	18	21	22	21	23

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie				
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06				
TES-Code: TES-WHV-VGN-FSRU		Seite 106 von 169				

Run ID		run61	run66	run71	run76	run81	run86	run91	run96	run101	run106	run111	run116
Wasserstand	m CD												
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	ōN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	ōN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōN	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8
(Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	482	371	358	360	362	352	422	524	512	513	501	535
FSRU	% WLL	72	55	54	54	54	53	63	78	76	77	75	80
Max. Fenderlasten	kN	3406	3251	2942	2668	2491	2321	2257	2086	2013	2012	2361	2933
FSRU	% WLL	81	77	70	63	59	55	53	49	48	48	56	69
Max. Fenderauslenkungen	m	0,36	0,33	0,28	0,24	0,22	0,20	0,20	0,18	0,17	0,17	0,21	0,28
FSRU	% WLL	20	18	15	13	12	11	11	10	9	9	11	15
Max. Dalbenlasten	kN	1396	1349	1403	1374	1355	1271	1485	1832	2006	2004	1739	1583
FSRU	% WLL	24	23	24	23	23	22	25	31	34	34	30	27
Max. Surfen Hochdruckverteilers	m	0,62	0,44	0,35	0,32	0,35	0,32	0,33	0,34	0,40	0,50	0,63	0,70
Max. Driften Hochdruckverteilers	m	0,53	0,53	0,56	0,56	0,59	0,63	0,73	0,84	0,96	0,88	0,71	0,59
Max. Tauchen Hochdruckverteilers	m	0,20	0,20	0,20	0,20	0,20	0,18	0,18	0,18	0,18	0,19	0,18	0,19
Verschiedene Kriterien	%	21	18	19	19	20	21	24	28	32	29	24	23
7 Max. Leinenlasten	kN	607	521	529	481	477	531	549	572	570	602	595	604
LNGC	% WLL	91	78	79	72	71	79	82	85	85	90	89	90
Max. Fenderlasten	kN	704	686	331	287	256	231	236	402	526	406	261	316
Schwimmende	% WLL	21	21	10	9	8	7	7	12	16	12	8	10
Max. Fenderauslenkungen	m	0,82	0,80	0,46	0,40	0,36	0,32	0,33	0,54	0,65	0,54	0,36	0,44
Schwimmende	% WLL	41	40	23	20	18	16	17	27	33	27	18	22
Max. Surfen relative STS	m	0,65	0,59	0,63	0,60	0,59	0,55	0,54	0,57	0,65	0,69	0,61	0,68
Max. Driften relative STS	m	0,47	0,46	0,38	0,43	0,40	0,42	0,44	0,46	0,53	0,53	0,44	0,43
7 Max. Tauchen relative STS	m	1,16	1,21	1,23	1,16	1,24	1,24	1,34	1,47	1,31	1,40	1,29	1,22
Verschiedene Kriterien	%	22	20	21	20	20	18	18	19	22	23	20	23

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 107 von 169

Run ID		run121	run126	run131	run136	run141	run146	run151	run156	run161	run166	run171	run176
Wasserstand	m CD												
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	∘N	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	ōΝ	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	ōΝ	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōΝ	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7
AX Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
10 Max. Leinenlasten	kN	357	313	336	447	468	442	438	490	510	483	397	344
FSRU	% WLL	53	47	50	67	70	66	66	73	76	72	59	51
39 Max. Fenderlasten	kN	3439	3315	2903	2731	2563	2197	2239	2153	1935	2000	2280	2869
FSRU	% WLL	81	78	69	65	61	52	53	51	46	47	54	68
37 Max. Fenderauslenkungen	m	0,37	0,34	0,27	0,25	0,23	0,19	0,19	0,18	0,16	0,17	0,20	0,27
FSRU	% WLL	20	19	15	14	13	10	11	10	9	9	11	15
76 Max. Dalbenlasten	kN	1247	1184	1169	1076	1146	1285	1588	1876	1855	1785	1559	1356
FSRU	% WLL	21	20	20	18	19	22	27	32	32	30	26	23
84 Max. Surfen Hochdruckverteilers	m	0,32	0,46	0,54	0,81	0,84	0,78	0,79	0,59	0,58	0,50	0,35	0,42
96 Max. Driften Hochdruckverteilers	m	0,52	0,53	0,54	0,54	0,57	0,61	0,71	0,83	0,96	0,87	0,70	0,58
20 Max. Tauchen Hochdruckverteilers	m	0,20	0,19	0,20	0,20	0,19	0,18	0,18	0,18	0,18	0,19	0,18	0,18
Verschiedene Kriterien	%	17	18	18	27	28	26	26	28	32	29	23	19
70 Max. Leinenlasten	kN	570	521	490	425	427	492	478	544	542	559	540	548
LNGC	% WLL	85	78	73	63	64	74	71	81	81	84	81	82
75 Max. Fenderlasten	kN	975	952	419	275	243	221	236	454	587	469	271	357
Schwimmende	% WLL	29	29	13	8	7	7	7	14	18	14	8	11
05 Max. Fenderauslenkungen	m	1,05	1,04	0,55	0,38	0,34	0,31	0,33	0,59	0,71	0,60	0,38	0,49
Schwimmende	% WLL	53	52	28	19	17	16	17	30	36	30	19	25
71 Max. Surfen relative STS	m	0,71	0,68	0,65	0,64	0,57	0,48	0,48	0,53	0,63	0,63	0,60	0,70
58 Max. Driften relative STS	m	0,58	0,53	0,37	0,40	0,36	0,37	0,42	0,46	0,55	0,53	0,45	0,41
36 Max. Tauchen relative STS	m	1,16	1,17	1,19	1,13	1,21	1,17	1,27	1,36	1,26	1,33	1,22	1,20
Verschiedene Kriterien	%	24	23	22	21	19	16	16	18	21	21	20	23

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 108 von 169

FSRU beladen und LNG-Tanker mit Membrantank 138 Tsd. in Ballast bei Wasserstand SKN

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 109 von 169

Run ID		run1	run6	run11	run16	run21	run26	1	run27	run31	run36	run41	2	run42	run46	run47	run48	run49	3	run50	run51	run5
Wasserstand	m CD																					╁
TR		5	5	5	5	5	5	4	2	5	5	5	2	2	5	2	1	0,5	0	0,2	5	5
Windrichtung	oN	0	30	60	90	120	150	150	150	180	210	240	240	240	270	270	270	270	270	270	300	33
Windgeschwindigkeit	m/s	19	17	14	15	14	14	13	13	17	19	20	18	18	20	18	17	15	15	14	20	2:
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,76	0,71	0,98	0,92	0,79	0,71	0,71	1,01	0,91	0,86	0,78	0,75	0,68	1,41	1,6
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,3	3,3	3,7	3,4	2,7	2,6	2,6	3,8	3,7	3,6	3,5	3,5	3,4	4,5	4,
Wellenrichtung	οN	348,1	10,9	51,2	91,3	122,2	139,0	138,9	138,7	151,3	171,9	241,5	240,3	240,3	313,5	312,6	312,6	312,6	312,6	312,6	335,0	339
gamma		2,4	2,8	3,3	3,2	3,5	2,2	2,2	2,2	1,7	1,5	2,8	2,8	2,8	1,7	1,7	1,7	1,7	1,7	1,7	1,9	2,
s		9,3	5,3	5,5	5,8	7,4	10,1	10,0	10,0	8,3	4,5	1,9	2,0	2,1	4,7	4,6	4,6	4,6	4,6	4,6	11,0	13
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12
Wellenrichtung	oN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	35
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1
s		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15
Strömungrichtung	ōΝ																					
Strömunggeschwindigkeit	m/s																					
Max. Leinenlasten	kN	533	484	488	431	450	455	448	431	545	567	566	524	524	529	492	474	459	456	449	499	5
FSRU	% WLL	80	72	73	64	67	68	67	65	82	85	85	78	78	79	74	71	69	68	67	75	7
Max. Fenderlasten	kN	3561	3546	3281	3159	2986	2898	2926	2993	2867	2815	2581	2603	2604	2570	2553	2754	2769	2785	2819	2872	33
FSRU	% WLL	84	84	78	75	71	69	69	71	68	67	61	62	62	61	60	65	65	66	67	68	7
Max. Fenderauslenkungen	m	0,40	0,39	0,34	0,31	0,29	0,27	0,28	0,29	0,27	0,26	0,24	0,23	0,23	0,23	0,23	0,25	0,26	0,26	0,26	0,27	0,
FSRU	% WLL	22	22	19	17	16	15	15	16	15	14	13	13	13	13	13	14	14	14	14	15	1
Max. Dalbenlasten	kN	1790	1638	1669	1539	1595	1642	1615	1550	1920	1988	2179	1903	1899	2070	1922	1848	1789	1774	1745	1742	17
FSRU	% WLL	30	28	28	26	27	28	27	26	33	34	37	32	32	35	33	31	30	30	30	30	2
Max. Surfen Hochdruckverteilers	m	0,54	0,40	0,37	0,53	0,57	0,56	0,54	0,51	0,59	0,44	0,43	0,42	0,42	0,38	0,35	0,37	0,37	0,35	0,32	0,51	0,
Max. Driften Hochdruckverteilers	m	0,64	0,60	0,65	0,66	0,69	0,66	0,67	0,67	0,68	0,80	0,95	0,85	0,85	0,86	0,78	0,74	0,72	0,71	0,70	0,70	0,
Max. Tauchen Hochdruckverteilers	m	0,25	0,23	0,25	0,24	0,25	0,24	0,25	0,26	0,23	0,24	0,25	0,24	0,24	0,24	0,24	0,24	0,23	0,23	0,23	0,24	0,
Verschiedene Kriterien	%	21	20	22	22	23	22	22	22	23	27	32	28	28	29	26	25	24	24	23	23	2
Max. Leinenlasten	kN	628	624	531	534	619	697	669	599	630	656	748	669	668	727	681	675	674	669	658	649	6
LNGC	% WLL	94	93	79	80	93	104	100	90	94	98	112	100	100	109	102	101	101	100	98	97	9
Max. Fenderlasten	kN	1416	1343	789	580	516	556	544	517	503	500	494	483	483	449	512	510	520	503	468	581	7.
Schwimmende	% WLL	43	40	24	17	16	17	16	16	15	15	15	15	15	14	15	15	16	15	14	18	2
Max. Fenderauslenkungen	m	1,37	1,32	0,89	0,70	0,64	0,68	0,67	0,64	0,63	0,63	0,62	0,61	0,61	0,58	0,64	0,64	0,65	0,63	0,60	0,70	0,
Schwimmende	% WLL	69	67	45	35	32	34	34	32	32	32	31	31	31	29	32	32	33	32	30	36	4
Max. Surfen relative STS	m	0,78	0,84	0,67	0,84	0,74	0,68	0,70	0,73	0,69	0,72	0,70	0,62	0,62	0,73	0,74	0,70	0,65	0,64	0,62	0,64	0,
Max. Driften relative STS	m	0,89	0,83	0,68	0,64	0,70	0,75	0,73	0,67	0,69	0,74	0,82	0,77	0,77	0,83	0,72	0,72	0,72	0,72	0,70	0,74	0,
Max. Tauchen relative STS	m	1,34	1,25	1,39	1,26	1,33	1,34	1,33	1,31	1,28	1,31	1,34	1,22	1,22	1,44	1,32	1,30	1,30	1,30	1,29	1,33	1,
Verschiedene Kriterien	%	30	28	23	28	25	25	24	24	23	25	27	26	26	28	25	24	24	24	23	25	2

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 110 von 169

Run ID		run61	4	run62	run66	run67	run68	run69	run70	run71	run76	run81	run86	run91	run96	run101	run106	run111	run116	5	run11
Wasserstand	m CD																				
TR		5	4	2	5	2	1	0,5	0,2	5	5	5	5	5	5	5	5	5	5	5	2
Windrichtung	οN	0	0	0	30	30	30	30	30	60	90	120	150	180	210	240	270	300	330	330	330
Windgeschwindigkeit	m/s	19	18	17	17	15	13	12	10	14	15	14	14	17	19	20	20	20	21	21	19
Wellenhöhe Hs	m	1,51	1,45	1,30	1,20	1,06	0,97	0,86	0,72	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61	1,60	1,43
Wellenperiode Tp	s	4,5	4,5	4,3	3,9	3,8	3,7	3,5	3,3	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7	4,7	4,5
Wellenrichtung	ōΝ	348,1	348,4	349,1	10,9	12,3	12,3	12,3	12,3	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3	339,4	339,
gamma		2,4	2,4	2,4	2,8	2,8	2,8	2,8	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1	2,1	2,1
S		9,3	9,2	9,1	5,3	5,3	5,3	5,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8	13,8	13,7
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	οN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōΝ	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	556	555	555	502	577	565	558	548	518	458	474	478	581	599	603	536	515	616	612	530
FSRU	% WLL	83	83	83	75	86	84	83	82	77	68	71	72	87	90	90	80	77	92	92	79
Max. Fenderlasten	kN	3388	3330	3200	3316	3345	3213	3113	3063	3082	3130	2918	2794	2688	2546	2343	2453	2693	3140	3138	3096
FSRU	% WLL	80	79	76	78	79	76	74	72	73	74	69	66	64	60	55	58	64	74	74	73
Max. Fenderauslenkungen	m	0,35	0,34	0,32	0,34	0,35	0,32	0,31	0,30	0,30	0,31	0,27	0,26	0,24	0,23	0,21	0,22	0,24	0,31	0,31	0,30
FSRU	% WLL	20	19	18	19	19	18	17	17	17	17	15	14	14	13	12	12	13	17	17	17
Max. Dalbenlasten	kN	1846	1845	1843	1676	1922	1886	1874	1850	1735	1604	1676	1645	2005	2061	2156	2033	1778	1766	1766	1769
FSRU	% WLL	31	31	31	28	33	32	32	31	29	27	28	28	34	35	37	35	30	30	30	30
Max. Surfen Hochdruckverteilers	m	0,67	0,64	0,57	0,52	0,49	0,47	0,45	0,43	0,44	0,36	0,40	0,38	0,42	0,37	0,41	0,48	0,63	0,79	0,78	0,66
Max. Driften Hochdruckverteilers	m	0,63	0,62	0,60	0,58	0,67	0,68	0,69	0,69	0,63	0,64	0,66	0,64	0,66	0,77	0,92	0,83	0,65	0,61	0,61	0,64
Max. Tauchen Hochdruckverteilers		0,25	0,24	0,24	0,23	0,25	0,25	0,25	0,25	0,25	0,24	0,25	0,24	0,24	0,24	0,25	0,25	0,24	0,24	0,24	0,24
Verschiedene Kriterien	%	22	21	20	19	22	23	23	23	21	21	22	21	22	26	31	28	22	26	26	22
Max. Leinenlasten	kN	686	669	630	680	697	692	691	679	583	545	580	631	603	602	606	619	627	672	669	614
LNGC	% WLL	103	100	94	102	104	103	103	102	87	82	87	94	90	90	91	93	94	100	100	92
Max. Fenderlasten	kN	1224	1165	1032	1161	969	844	746	633	699	556	477	486	472	373	377	419	509	689	687	650
Schwimmende	% WLL	37	35	31	35	29	25	22	19	21	17	14	15	14	11	11	13	15	21	21	20
Max. Fenderauslenkungen	m	1,23	1,19	1,09	1,19	1,04	0,94	0,86	0,75	0,81	0,68	0,61	0,61	0,60	0,50	0,51	0,55	0,64	0,80	0,80	0,77
Schwimmende	% WLL	62	60	55	60	52	48	43	38	41	34	31	31	30	25	26	28	32	41	40	39
Max. Surfen relative STS	m	0,70	0,69	0,66	0,77	0,71	0,68	0,68	0,64	0,65	0,78	0,67	0,66	0,66	0,62	0,60	0,66	0,63	0,77	0,77	0,68
Max. Driften relative STS	m	0,84	0,82	0,79	0,74	0,76	0,73	0,71	0,71	0,64	0,64	0,67	0,73	0,68	0,68	0,74	0,73	0,71	0,70	0,70	0,73
Max. Tauchen relative STS	m	1,29	1,25	1,16	1,22	1,23	1,23	1,24	1,23	1,36	1,26	1,34	1,34	1,26	1,32	1,34	1,46	1,31	1,39	1,39	1,40
Verschiedene Kriterien	%	28	27	26	26	25	24	24	24	22	26	22	24	23	23	25	24	24	26	26	24

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 111 von 169

Run ID		run121	run126	run131	run136	run141	run146	run151	run156	run161	run166	run171	run176
Wasserstand	m CD												
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	οN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	ōΝ	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
s		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	οN	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	444	415	404	444	461	449	462	488	574	522	449	448
FSRU	% WLL	66	62	60	66	69	67	69	73	86	78	67	67
Max. Fenderlasten	kN	3585	3483	3220	3009	2957	2773	2802	2572	2443	2242	2778	3300
FSRU	% WLL	85	82	76	71	70	66	66	61	58	53	66	78
Max. Fenderauslenkungen	m	0,41	0,38	0,32	0,29	0,28	0,25	0,25	0,23	0,21	0,19	0,26	0,34
FSRU	% WLL	23	21	18	16	16	14	14	13	12	11	14	19
Max. Dalbenlasten	kN	1516	1427	1464	1459	1525	1527	1789	1854	2082	1956	1734	1672
FSRU	% WLL	26	24	25	25	26	26	30	32	35	33	29	28
Max. Surfen Hochdruckverteilers	m	0,37	0,48	0,58	0,79	0,82	0,81	0,86	0,62	0,59	0,50	0,37	0,50
Max. Driften Hochdruckverteilers	m	0,65	0,62	0,63	0,68	0,71	0,64	0,68	0,77	0,93	0,84	0,71	0,63
Max. Tauchen Hochdruckverteilers	m	0,24	0,23	0,25	0,24	0,26	0,24	0,23	0,23	0,25	0,25	0,24	0,24
Verschiedene Kriterien	%	22	21	21	26	27	27	29	26	31	28	24	21
Max. Leinenlasten	kN	521	490	443	504	569	593	552	576	591	616	588	551
LNGC	% WLL	78	73	66	75	85	89	83	86	88	92	88	82
Max. Fenderlasten	kN	1371	1290	714	529	460	487	454	372	366	355	503	648
Schwimmende	% WLL	41	39	22	16	14	15	14	11	11	11	15	20
Max. Fenderauslenkungen	m	1,34	1,28	0,83	0,65	0,59	0,62	0,58	0,50	0,49	0,48	0,63	0,76
Schwimmende	% WLL	68	65	42	33	30	31	30	25	25	24	32	39
Max. Surfen relative STS	m	0,75	0,82	0,67	0,87	0,73	0,64	0,65	0,57	0,59	0,65	0,61	0,75
Max. Driften relative STS	m	0,81	0,75	0,61	0,59	0,62	0,67	0,65	0,67	0,75	0,74	0,67	0,67
Max. Tauchen relative STS	m	1,25	1,17	1,34	1,25	1,32	1,29	1,22	1,25	1,29	1,42	1,25	1,36
Verschiedene Kriterien	%	27	27	22	29	24	22	22	22	25	25	22	25

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 112 von 169

FSRU in Ballast und LNG-Tanker mit Membrantank 138 Tsd. beladen bei fünfjährlichem Hochwasserstand

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 113 von 169

Run ID		run1	run6	run11	run16	run21	run26	run31	run36	run41	run46	run51	run56
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	οN	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	ºN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	οN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
s		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōΝ												
Strömunggeschwindigkeit	m/s												
Max. Leinenlasten	kN	367	296	234	236	239	247	340	513	552	490	409	463
FSRU	% WLL	55	44	35	35	36	37	51	77	83	73	61	69
Max. Fenderlasten	kN	3139	3078	2577	2325	2024	1836	1858	1806	2276	2063	1946	2618
FSRU	% WLL	74	73	61	55	48	43	44	43	54	49	46	62
Max. Fenderauslenkungen	m	0,31	0,30	0,23	0,20	0,17	0,15	0,15	0,15	0,20	0,17	0,16	0,23
FSRU	% WLL	17	17	13	11	9	8	8	8	11	10	9	13
Max. Dalbenlasten	kN	1141	1018	899	810	844	970	1277	1823	1940	1850	1303	1269
FSRU	% WLL	19	17	15	14	14	16	22	31	33	31	22	22
Max. Surfen Hochdruckverteilers	m	0,49	0,35	0,22	0,35	0,42	0,40	0,48	0,31	0,29	0,37	0,53	0,63
Max. Driften Hochdruckverteilers	m	0,38	0,40	0,39	0,38	0,37	0,39	0,47	0,80	0,97	0,86	0,47	0,39
Max. Tauchen Hochdruckverteilers	m	0,15	0,15	0,16	0,15	0,14	0,13	0,14	0,14	0,14	0,14	0,13	0,15
Verschiedene Kriterien	%	16	13	13	13	14	13	16	27	32	29	18	21
Max. Leinenlasten	kN	633	555	513	476	401	445	461	564	600	578	505	550
LNGC	% WLL	95	83	77	71	60	67	69	84	90	86	75	82
Max. Fenderlasten	kN	1156	1192	535	301	226	251	296	699	886	711	342	448
Schwimmende	% WLL	35	36	16	9	7	8	9	21	27	21	10	13
Max. Fenderauslenkungen	m	1,19	1,21	0,66	0,42	0,31	0,35	0,41	0,81	0,98	0,82	0,47	0,58
Schwimmende	% WLL	60	61	33	21	16	18	21	41	50	42	24	29
Max. Surfen relative STS	m	0,63	0,55	0,40	0,35	0,32	0,35	0,44	0,55	0,68	0,59	0,49	0,49
Max. Driften relative STS	m	0,52	0,48	0,36	0,33	0,27	0,32	0,40	0,49	0,59	0,54	0,39	0,33
Max. Tauchen relative STS	m	0,91	0,92	0,94	0,90	0,84	0,82	1,00	1,11	1,13	1,23	0,96	0,90
Verschiedene Kriterien	%	21	18	13	12	11	12	15	18	23	20	16	16

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 114 von 169

Run ID		run61	run66	run71	run76	run81	run86	run91	run96	run101	run106	run111	run116
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	oN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	oN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
s		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	oN	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	468	370	285	231	223	258	374	559	574	510	501	565
FSRU	% WLL	70	55	43	35	33	39	56	84	86	76	75	85
Max. Fenderlasten	kN	2969	2955	2490	2286	1999	1793	1861	1800	2136	2083	1798	2544
FSRU	% WLL	70	70	59	54	47	42	44	43	51	49	43	60
Max. Fenderauslenkungen	m	0,28	0,28	0,22	0,20	0,17	0,15	0,15	0,15	0,18	0,18	0,15	0,23
FSRU	% WLL	16	16	12	11	9	8	9	8	10	10	8	13
Max. Dalbenlasten	kN	1281	1020	980	885	854	938	1295	1944	1977	1874	1423	1548
FSRU	% WLL	22	17	17	15	15	16	22	33	34	32	24	26
Max. Surfen Hochdruckverteilers	m	0,64	0,49	0,38	0,23	0,22	0,20	0,28	0,36	0,40	0,50	0,66	0,79
Max. Driften Hochdruckverteilers	m	0,36	0,39	0,38	0,38	0,37	0,38	0,48	0,77	0,94	0,85	0,48	0,38
Max. Tauchen Hochdruckverteilers	m	0,16	0,15	0,16	0,15	0,14	0,13	0,14	0,14	0,14	0,14	0,14	0,15
Verschiedene Kriterien	%	21	16	13	13	12	13	16	26	31	28	22	26
Max. Leinenlasten	kN	622	546	520	485	415	460	482	601	614	593	516	553
LNGC	% WLL	93	82	78	73	62	69	72	90	92	89	77	83
Max. Fenderlasten	kN	862	871	415	269	206	224	267	570	737	587	300	372
Schwimmende	% WLL	26	26	13	8	6	7	8	17	22	18	9	11
Max. Fenderauslenkungen	m	0,96	0,97	0,55	0,37	0,29	0,31	0,37	0,69	0,85	0,71	0,42	0,51
Schwimmende	% WLL	49	49	28	19	14	16	19	35	43	36	21	26
Max. Surfen relative STS	m	0,47	0,47	0,35	0,34	0,33	0,34	0,43	0,54	0,63	0,59	0,43	0,47
Max. Driften relative STS	m	0,42	0,39	0,34	0,33	0,27	0,31	0,41	0,44	0,54	0,51	0,37	0,31
Max. Tauchen relative STS	m	0,90	0,94	0,95	0,91	0,87	0,83	1,04	1,16	1,13	1,26	0,98	0,90
Verschiedene Kriterien	%	16	16	12	11	11	11	14	18	21	20	14	16

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 115 von 169

Run ID		run121	run126	run131	run136	run141	run146	run151	run156	run161	run166	run171	run17
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	oN	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	oN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,
Wellenrichtung	oN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	oN	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	308	274	246	378	418	402	436	487	505	459	305	313
FSRU	% WLL	46	41	37	57	62	60	65	73	76	69	46	47
Max. Fenderlasten	kN	3170	3048	2407	2328	2038	1671	1749	1682	2018	1939	1801	243
FSRU	% WLL	75	72	57	55	48	39	41	40	48	46	43	58
Max. Fenderauslenkungen	m	0,32	0,30	0,21	0,20	0,17	0,13	0,14	0,13	0,17	0,16	0,15	0,2
FSRU	% WLL	18	16	12	11	10	7	8	7	9	9	8	12
Max. Dalbenlasten	kN	1065	1054	917	913	917	1054	1332	1785	1810	1759	1192	978
FSRU	% WLL	18	18	16	16	16	18	23	30	31	30	20	17
Max. Surfen Hochdruckverteilers	m	0,26	0,33	0,44	0,71	0,79	0,76	0,82	0,59	0,51	0,43	0,33	0,4
Max. Driften Hochdruckverteilers	m	0,39	0,38	0,38	0,38	0,37	0,37	0,50	0,81	0,98	0,88	0,49	0,3
Max. Tauchen Hochdruckverteilers	m	0,16	0,15	0,16	0,15	0,14	0,13	0,14	0,14	0,14	0,14	0,14	0,1
Verschiedene Kriterien	%	13	13	15	24	26	25	27	27	33	29	16	14
Max. Leinenlasten	kN	579	523	455	435	367	419	450	519	576	528	476	505
LNGC	% WLL	87	78	68	65	55	63	67	78	86	79	71	75
Max. Fenderlasten	kN	1235	1293	472	273	190	217	269	612	801	665	308	406
Schwimmende	% WLL	37	39	14	8	6	7	8	18	24	20	9	12
Max. Fenderauslenkungen	m	1,24	1,29	0,60	0,38	0,26	0,30	0,37	0,73	0,91	0,78	0,43	0,5
Schwimmende	% WLL	63	65	30	19	13	15	19	37	46	40	22	27
Max. Surfen relative STS	m	0,73	0,60	0,37	0,35	0,30	0,33	0,43	0,51	0,63	0,64	0,43	0,4
Max. Driften relative STS	m	0,54	0,50	0,35	0,31	0,27	0,29	0,40	0,46	0,57	0,52	0,39	0,3
Max. Tauchen relative STS	m	0,91	0,93	0,95	0,92	0,89	0,82	0,98	1,15	1,15	1,23	0,99	0,9
Verschiedene Kriterien	%	24	20	12	12	10	11	14	17	21	21	14	16

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 116 von 169

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 117 von 169

FSRU beladen und LNG-Tanker mit Membrantank 138 Tsd. in Ballast bei fünfjährlichem Hochwasserstand

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 118 von 169

Run ID		run1	run6	run11	run16	run21	run26	run31	run36	run41	run46	run51	run56
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	oN	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	oN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	oN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	oN												
Strömunggeschwindigkeit	m/s												
Max. Leinenlasten	kN	394	335	246	231	267	266	373	518	538	465	386	477
FSRU	% WLL	59	50	37	35	40	40	56	77	80	70	58	71
Max. Fenderlasten	kN	2791	2712	2160	2271	2122	1919	1869	1955	1944	1863	2068	2273
FSRU	% WLL	66	64	51	54	50	45	44	46	46	44	49	54
Max. Fenderauslenkungen	m	0,26	0,25	0,18	0,20	0,18	0,16	0,15	0,16	0,16	0,15	0,17	0,20
FSRU	% WLL	14	14	10	11	10	9	9	9	9	8	10	11
Max. Dalbenlasten	kN	1257	1130	886	906	879	1039	1445	1836	1995	1833	1227	1306
FSRU	% WLL	21	19	15	15	15	18	25	31	34	31	21	22
Max. Surfen Hochdruckverteilers	m	0,51	0,34	0,22	0,39	0,50	0,47	0,58	0,41	0,35	0,35	0,51	0,66
Max. Driften Hochdruckverteilers	m	0,29	0,28	0,25	0,27	0,28	0,27	0,37	0,71	0,92	0,81	0,42	0,29
Max. Tauchen Hochdruckverteilers	m	0,16	0,16	0,17	0,16	0,17	0,18	0,19	0,20	0,18	0,20	0,18	0,18
Verschiedene Kriterien	%	17	11	8	13	17	16	19	24	31	27	17	22
Max. Leinenlasten	kN	597	525	453	382	431	431	447	550	583	492	506	510
LNGC	% WLL	89	79	68	57	64	65	67	82	87	74	76	76
Max. Fenderlasten	kN	1206	1160	598	352	269	283	331	465	466	409	371	484
Schwimmende	% WLL	36	35	18	11	8	9	10	14	14	12	11	15
Max. Fenderauslenkungen	m	1,22	1,19	0,72	0,48	0,37	0,39	0,46	0,60	0,60	0,54	0,51	0,61
Schwimmende	% WLL	62	60	36	24	19	20	23	30	30	27	26	31
Max. Surfen relative STS	m	0,69	0,71	0,56	0,60	0,58	0,45	0,55	0,63	0,64	0,61	0,53	0,64
Max. Driften relative STS	m	0,67	0,64	0,46	0,40	0,38	0,38	0,45	0,61	0,76	0,65	0,50	0,46
Max. Tauchen relative STS	m	0,69	0,67	0,68	0,70	0,63	0,60	0,61	0,80	0,87	0,88	0,63	0,63
Verschiedene Kriterien	%	23	24	19	20	19	15	18	21	25	22	18	21

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 119 von 169

Run ID		run61	run66	run71	run76	run81	run86	run91	run96	run101	run106	run111	run116
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	oN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	oN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	oN	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8
(Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	489	392	294	237	227	272	404	562	549	469	482	595
FSRU	% WLL	73	59	44	35	34	41	60	84	82	70	72	89
Max. Fenderlasten	kN	2570	2376	2034	2198	2029	1804	1720	1713	1795	1589	2037	2129
FSRU	% WLL	61	56	48	52	48	43	41	40	42	38	48	50
Max. Fenderauslenkungen	m	0,23	0,21	0,17	0,19	0,17	0,15	0,14	0,14	0,14	0,13	0,17	0,18
FSRU	% WLL	13	12	10	10	10	8	8	8	8	7	10	10
Max. Dalbenlasten	kN	1343	1111	897	830	828	960	1402	1949	1932	1849	1321	1623
FSRU	% WLL	23	19	15	14	14	16	24	33	33	31	22	28
Max. Surfen Hochdruckverteilers	m	0,65	0,50	0,39	0,24	0,30	0,27	0,36	0,37	0,44	0,46	0,63	0,83
Max. Driften Hochdruckverteilers	m	0,30	0,28	0,26	0,24	0,26	0,25	0,35	0,69	0,86	0,77	0,41	0,28
Max. Tauchen Hochdruckverteilers	m	0,17	0,16	0,17	0,17	0,18	0,18	0,19	0,20	0,19	0,20	0,19	0,18
Verschiedene Kriterien	%	22	17	13	8	10	9	12	23	29	26	21	28
4 Max. Leinenlasten	kN	574	524	476	406	450	469	467	569	540	494	511	526
LNGC	% WLL	86	78	71	61	67	70	70	85	81	74	76	79
6 Max. Fenderlasten	kN	1056	980	523	321	255	274	290	338	340	282	366	432
Schwimmende	% WLL	32	30	16	10	8	8	9	10	10	9	11	13
1 Max. Fenderauslenkungen	m	1,11	1,06	0,65	0,45	0,35	0,38	0,40	0,46	0,46	0,39	0,49	0,57
Schwimmende	% WLL	56	53	33	22	18	19	20	23	23	20	25	29
4 Max. Surfen relative STS	m	0,58	0,64	0,53	0,57	0,57	0,44	0,47	0,52	0,57	0,52	0,53	0,58
55 Max. Driften relative STS	m	0,57	0,55	0,42	0,38	0,38	0,38	0,44	0,57	0,65	0,59	0,53	0,45
0 Max. Tauchen relative STS	m	0,68	0,66	0,67	0,70	0,63	0,59	0,61	0,76	0,90	0,88	0,63	0,62
Verschiedene Kriterien	%	19	21	18	19	19	15	16	19	22	20	18	19

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 120 von 169

Run ID		run121	run126	run131	run136	run141	run146	run151	run156	run161	run166	run171	run176
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	οN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	οN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
s		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōΝ	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	327	280	255	386	430	427	465	466	506	479	293	338
FSRU	% WLL	49	42	38	58	64	64	70	70	76	72	44	51
Max. Fenderlasten	kN	2640	2657	2058	2103	1943	1726	1630	1642	1855	1601	1848	2226
FSRU	% WLL	62	63	49	50	46	41	39	39	44	38	44	53
Max. Fenderauslenkungen	m	0,24	0,24	0,17	0,18	0,16	0,14	0,13	0,13	0,15	0,13	0,15	0,19
FSRU	% WLL	13	13	10	10	9	8	7	7	8	7	8	11
Max. Dalbenlasten	kN	1176	1179	907	969	915	1030	1465	1813	1828	1738	1127	933
FSRU	% WLL	20	20	15	16	16	17	25	31	31	30	19	16
Max. Surfen Hochdruckverteilers	m	0,27	0,34	0,47	0,71	0,83	0,83	0,91	0,64	0,56	0,53	0,33	0,48
Max. Driften Hochdruckverteilers	m	0,30	0,29	0,26	0,25	0,27	0,27	0,36	0,71	0,88	0,81	0,41	0,28
Max. Tauchen Hochdruckverteilers	m	0,17	0,17	0,17	0,17	0,17	0,18	0,19	0,20	0,19	0,20	0,18	0,18
Verschiedene Kriterien	%	10	11	16	24	28	28	30	24	29	27	14	16
Max. Leinenlasten	kN	555	491	410	355	338	357	403	465	454	461	454	460
LNGC	% WLL	83	73	61	53	51	53	60	70	68	69	68	69
Max. Fenderlasten	kN	1153	1101	541	311	241	250	266	293	322	276	326	422
Schwimmende	% WLL	35	33	16	9	7	8	8	9	10	8	10	13
Max. Fenderauslenkungen	m	1,18	1,15	0,67	0,43	0,34	0,35	0,37	0,41	0,44	0,38	0,44	0,56
Schwimmende	% WLL	60	58	34	22	17	18	19	21	22	19	22	28
Max. Surfen relative STS	m	0,69	0,71	0,51	0,64	0,59	0,45	0,53	0,55	0,52	0,50	0,49	0,55
Max. Driften relative STS	m	0,62	0,60	0,40	0,34	0,34	0,35	0,39	0,59	0,60	0,59	0,46	0,47
Max. Tauchen relative STS	m	0,67	0,67	0,64	0,68	0,61	0,55	0,61	0,74	0,85	0,87	0,61	0,60
Verschiedene Kriterien	%	23	24	17	21	20	15	18	20	20	20	16	18

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 121 von 169

FSRU in Ballast und LNG-Tanker mit Membrantank 170 Tsd. beladen bei Wasserstand SKN

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 122 von 169

Run ID		run1	run6	run11	run16	run21	run26	run31	run36	run41	run46	run51	run56
Wasserstand	m CD												
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	ōΝ	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	ōN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōΝ												
Strömunggeschwindigkeit	m/s												
Max. Leinenlasten	kN	473	367	360	391	389	355	410	463	501	510	430	550
FSRU	% WLL	71	55	54	58	58	53	61	69	75	76	64	82
Max. Fenderlasten	kN	3529	3425	2908	2683	2400	2385	2360	2259	2226	2056	2211	3092
FSRU	% WLL	83	81	69	63	57	56	56	53	53	49	52	73
Max. Fenderauslenkungen	m	0,39	0,36	0,27	0,24	0,21	0,21	0,21	0,20	0,19	0,17	0,19	0,30
FSRU	% WLL	22	20	15	13	12	12	11	11	11	10	11	17
Max. Dalbenlasten	kN	1516	1442	1376	1349	1303	1186	1369	1643	1943	2010	1668	1615
FSRU	% WLL	26	24	23	23	22	20	23	28	33	34	28	27
Max. Surfen Hochdruckverteilers	m	0,60	0,37	0,30	0,59	0,65	0,60	0,54	0,60	0,65	0,48	0,49	0,71
Max. Driften Hochdruckverteilers	m	0,44	0,46	0,46	0,50	0,50	0,45	0,58	0,70	0,83	0,77	0,56	0,48
Max. Tauchen Hochdruckverteilers	m	0,17	0,19	0,18	0,18	0,18	0,16	0,15	0,16	0,15	0,16	0,15	0,17
Verschiedene Kriterien	%	20	15	15	20	22	20	19	23	28	26	19	24
Max. Leinenlasten	kN	569	520	420	344	308	327	453	542	568	502	436	521
LNGC	% WLL	85	78	63	51	46	49	68	81	85	75	65	78
Max. Fenderlasten	kN	1103	1010	398	287	228	250	271	380	521	363	274	370
Schwimmende	% WLL	33	30	12	9	7	8	8	11	16	11	8	11
Max. Fenderauslenkungen	m	1,15	1,08	0,53	0,40	0,32	0,35	0,38	0,52	0,65	0,50	0,38	0,51
Schwimmende	% WLL	58	55	27	20	16	18	19	26	33	25	19	26
Max. Surfen relative STS	m	0,60	0,60	0,51	0,69	0,59	0,52	0,56	1,13	1,26	0,81	0,57	0,69
2 Max. Driften relative STS	m	0,55	0,48	0,36	0,39	0,37	0,37	0,44	0,54	0,62	0,62	0,44	0,42
Max. Tauchen relative STS	m	1,05	1,12	1,01	1,11	1,03	0,94	1,10	1,24	1,21	1,20	1,03	1,06
Verschiedene Kriterien	%	20	20	17	23	20	17	19	38	42	27	19	23

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 123 von 169

Run ID		run61	run66	run71	run76	run81	run86	run91	run96	run101	run106	run111	run116	1	run11
Wasserstand	m CD														
TR		5	5	5	5	5	5	5	5	5	5	5	5	4	2
Windrichtung	οN	0	30	60	90	120	150	180	210	240	270	300	330	330	33
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21	20	19
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61	1,57	1,4
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7	4,6	4,
Wellenrichtung	ōN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3	339,4	339
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1	2,1	2,
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8	13,8	13,
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,3
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,
Wellenrichtung	ōN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,
Strömungrichtung	ōN	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,
Max. Leinenlasten	kN	569	410	364	378	378	344	398	610	626	525	507	688	669	59
FSRU	% WLL	85	61	54	56	56	51	60	91	94	79	76	103	100	89
Max. Fenderlasten	kN	3459	3333	2886	2610	2306	2336	2289	2195	2130	1956	2152	3065	3056	302
FSRU	% WLL	82	79	68	62	55	55	54	52	50	46	51	72	72	71
Max. Fenderauslenkungen	m	0,37	0,34	0,27	0,23	0,20	0,20	0,20	0,19	0,18	0,16	0,18	0,30	0,30	0,2
FSRU	% WLL	21	19	15	13	11	11	11	10	10	9	10	17	17	16
Max. Dalbenlasten	kN	1556	1496	1440	1445	1423	1281	1503	1790	1990	2080	1759	1852	1807	163
FSRU	% WLL	26	25	24	25	24	22	26	30	34	35	30	31	31	28
Max. Surfen Hochdruckverteilers	m	0,73	0,51	0,35	0,35	0,38	0,35	0,35	0,80	0,84	0,63	0,65	0,87	0,85	0,7
Max. Driften Hochdruckverteilers	m	0,43	0,45	0,46	0,50	0,51	0,47	0,59	0,73	0,86	0,75	0,57	0,49	0,48	0,4
Max. Tauchen Hochdruckverteilers	m	0,17	0,18	0,18	0,18	0,18	0,16	0,15	0,16	0,16	0,16	0,15	0,17	0,17	0,1
Verschiedene Kriterien	%	24	17	15	17	17	16	20	27	29	25	22	29	28	25
Max. Leinenlasten	kN	570	519	432	368	327	402	486	597	621	545	453	577	565	51
LNGC	% WLL	85	78	65	55	49	60	73	89	93	82	68	86	85	78
Max. Fenderlasten	kN	789	758	327	263	204	216	226	333	466	311	227	316	314	30
Schwimmende	% WLL	24	23	10	8	6	7	7	10	14	9	7	10	9	9
Max. Fenderauslenkungen	m	0,90	0,87	0,45	0,37	0,28	0,30	0,31	0,46	0,60	0,43	0,32	0,44	0,44	0,4
Schwimmende	% WLL	45	44	23	18	14	15	16	23	30	22	16	22	22	21
Max. Surfen relative STS	m	0,59	0,51	0,43	0,55	0,53	0,47	0,62	1,44	1,54	0,96	0,54	0,68	0,67	0,6
Max. Driften relative STS	m	0,51	0,43	0,37	0,41	0,38	0,38	0,43	0,50	0,55	0,58	0,43	0,41	0,41	0,4
Max. Tauchen relative STS	m	1,00	1,09	1,00	1,08	1,01	0,95	1,08	1,19	1,20	1,16	1,05	1,07	1,06	1,0
Verschiedene Kriterien	%	20	17	14	18	18	16	21	48	51	32	18	23	22	21

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 124 von 169

Run ID		run121	run126	run131	run136	run141	run146	run151	run156	run161	run166	run171	run176
Wasserstand	m CD												
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	∘N	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	∘N	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	∘N	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	358	362	371	412	427	390	409	463	516	514	385	404
FSRU	% WLL	54	54	55	62	64	58	61	69	77	77	58	60
Max. Fenderlasten	kN	3446	3342	2747	2731	2663	2405	2177	2205	2075	2062	2095	2939
FSRU	% WLL	81	79	65	65	63	57	51	52	49	49	50	69
Max. Fenderauslenkungen	m	0,37	0,34	0,25	0,25	0,24	0,21	0,19	0,19	0,17	0,17	0,18	0,28
FSRU	% WLL	21	19	14	14	13	12	10	11	10	10	10	15
Max. Dalbenlasten	kN	1373	1290	1232	1137	1114	1246	1459	1682	1833	1906	1497	1500
FSRU	% WLL	23	22	21	19	19	21	25	29	31	32	25	25
Max. Surfen Hochdruckverteilers	m	0,31	0,44	0,62	1,02	1,07	1,00	0,92	0,75	0,77	0,62	0,36	0,51
Max. Driften Hochdruckverteilers	m	0,44	0,43	0,45	0,46	0,49	0,44	0,54	0,72	0,83	0,76	0,56	0,48
Max. Tauchen Hochdruckverteilers	m	0,18	0,18	0,18	0,18	0,18	0,16	0,16	0,16	0,16	0,16	0,15	0,17
Verschiedene Kriterien	%	15	15	21	34	36	33	31	25	28	25	19	17
Max. Leinenlasten	kN	544	481	330	363	314	316	415	496	508	514	356	448
LNGC	% WLL	81	72	49	54	47	47	62	74	76	77	53	67
Max. Fenderlasten	kN	1214	1143	470	289	201	220	258	357	483	331	257	357
Schwimmende	% WLL	37	34	14	9	6	7	8	11	15	10	8	11
Max. Fenderauslenkungen	m	1,23	1,18	0,60	0,40	0,28	0,31	0,36	0,49	0,61	0,46	0,36	0,49
Schwimmende	% WLL	62	59	30	20	14	15	18	25	31	23	18	25
Max. Surfen relative STS	m	0,62	0,65	0,60	0,69	0,59	0,52	0,51	0,89	0,96	0,75	0,57	0,60
Max. Driften relative STS	m	0,59	0,56	0,36	0,36	0,33	0,33	0,40	0,48	0,57	0,61	0,41	0,39
Max. Tauchen relative STS	m	0,96	1,00	0,93	0,96	0,92	0,87	1,01	1,15	1,09	1,08	1,01	1,03
Verschiedene Kriterien	%	21	22	20	23	20	17	17	30	32	25	19	20

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 125 von 169

FSRU beladen und LNG-Tanker mit Membrantank 170 Tsd. in Ballast bei Wasserstand SKN

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 126 von 169

Run ID		run1	run6	run11	run16	run21	run26	run31	run36	run41	run46	run51	run56
Wasserstand	m CD												
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	ōΝ	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	ōN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōN												
X Strömunggeschwindigkeit	m/s												
7 Max. Leinenlasten	kN	546	460	414	415	418	378	466	515	592	530	462	657
FSRU	% WLL	82	69	62	62	62	57	70	77	89	79	69	98
2 Max. Fenderlasten	kN	3392	3392	3284	3373	3230	2956	2670	2508	2512	2595	2763	3256
FSRU	% WLL	80	80	78	80	76	70	63	59	59	61	65	77
Max. Fenderauslenkungen	m	0,36	0,35	0,34	0,35	0,33	0,28	0,24	0,22	0,22	0,23	0,25	0,33
FSRU	% WLL	20	20	19	20	18	16	13	12	12	13	14	18
8 Max. Dalbenlasten	kN	1585	1580	1476	1474	1508	1418	1708	1827	2328	2096	1723	1779
FSRU	% WLL	27	27	25	25	26	24	29	31	40	36	29	30
5 Max. Surfen Hochdruckverteilers	m	0,71	0,41	0,45	0,67	0,80	0,62	0,50	0,43	0,39	0,36	0,55	0,85
Max. Driften Hochdruckverteilers	m	0,52	0,52	0,50	0,57	0,55	0,53	0,62	0,68	0,85	0,74	0,60	0,49
Max. Tauchen Hochdruckverteilers	m	0,20	0,19	0,19	0,19	0,20	0,20	0,21	0,21	0,21	0,21	0,20	0,19
Verschiedene Kriterien	%	24	17	17	22	27	21	21	23	28	25	20	28
Max. Leinenlasten	kN	591	564	463	427	409	429	470	477	570	589	513	603
LNGC	% WLL	88	84	69	64	61	64	70	71	85	88	77	90
6 Max. Fenderlasten	kN	1429	1566	662	519	452	448	412	411	397	388	392	576
Schwimmende	% WLL	43	47	20	16	14	14	12	12	12	12	12	17
6 Max. Fenderauslenkungen	m	1,38	1,46	0,78	0,65	0,58	0,58	0,54	0,54	0,53	0,52	0,53	0,70
Schwimmende	% WLL	70	74	39	33	29	29	28	28	27	26	27	35
1 Max. Surfen relative STS	m	0,86	0,91	0,77	0,85	0,82	0,76	0,78	0,77	0,90	0,74	0,78	0,80
1 Max. Driften relative STS	m	0,71	0,68	0,53	0,47	0,44	0,45	0,47	0,51	0,60	0,62	0,50	0,51
Max. Tauchen relative STS	m	1,47	1,52	1,61	1,75	1,67	1,73	1,71	1,65	1,85	1,86	1,73	1,69
Verschiedene Kriterien	%	29	30	26	28	27	25	26	26	30	25	26	27

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 127 von 169

Run ID		run61	1	run62	run66	run71	run76	run81	run86	run91	run96	run101	run106	run111	run116	2	run11
Wasserstand	m CD																
TR		5	5	2	5	5	5	5	5	5	5	5	5	5	5	2	2
Windrichtung	∘N	0	0	0	30	60	90	120	150	180	210	240	270	300	330	330	330
Windgeschwindigkeit	m/s	19	19	17	17	14	15	14	14	17	19	20	20	20	21	19	19
Wellenhöhe Hs	m	1,51	1,51	1,30	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61	1,44	1,4
Wellenperiode Tp	S	4,5	4,5	4,3	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7	4,5	4,5
Wellenrichtung	∘N	348,1	348,1	349,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3	339,6	339,
gamma		2,4	2,4	2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1	2,1	2,1
s		9,3	9,3	9,1	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8	13,7	13,
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,3
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,
Wellenrichtung	oN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
s		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,
Strömungrichtung	ōΝ	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	669	669	525	500	452	404	405	406	502	551	592	526	575	796	669	66
FSRU	% WLL	100	100	79	75	68	60	61	61	75	82	89	79	86	119	100	10
Max. Fenderlasten	kN	3255	3255	3199	3191	3153	3237	3056	2823	2452	2325	2148	2239	2614	3074	3080	308
FSRU	% WLL	77	77	76	75	75	77	72	67	58	55	51	53	62	73	73	73
Max. Fenderauslenkungen	m	0,33	0,33	0,32	0,32	0,31	0,33	0,30	0,26	0,22	0,20	0,18	0,19	0,23	0,30	0,30	0,3
FSRU	% WLL	18	18	18	18	17	18	17	14	12	11	10	11	13	17	17	17
Max. Dalbenlasten	kN	1804	1804	1593	1675	1573	1564	1576	1464	1750	1916	2295	2046	1763	2128	1804	179
FSRU	% WLL	31	31	27	28	27	27	27	25	30	33	39	35	30	36	31	31
Max. Surfen Hochdruckverteilers	m	0,85	0,85	0,68	0,57	0,52	0,43	0,47	0,38	0,36	0,50	0,57	0,57	0,74	1,00	0,85	0,8
Max. Driften Hochdruckverteilers	m	0,49	0,49	0,51	0,50	0,47	0,54	0,53	0,50	0,59	0,65	0,81	0,71	0,56	0,47	0,48	0,4
Max. Tauchen Hochdruckverteilers	m	0,20	0,20	0,19	0,19	0,19	0,20	0,20	0,20	0,21	0,21	0,21	0,22	0,19	0,19	0,20	0,2
Verschiedene Kriterien	%	28	28	23	19	17	18	18	17	20	22	27	24	25	33	28	28
Max. Leinenlasten	kN	622	622	583	586	516	404	426	488	517	509	525	515	552	661	567	56
LNGC	% WLL	93	93	87	88	77	60	64	73	77	76	78	77	83	99	85	84
Max. Fenderlasten	kN	1256	1256	894	1371	641	460	416	395	366	340	309	341	350	519	515	51
Schwimmende	% WLL	38	38	27	41	19	14	13	12	11	10	9	10	11	16	16	16
Max. Fenderauslenkungen	m	1,26	1,26	0,99	1,33	0,76	0,59	0,55	0,53	0,50	0,47	0,43	0,46	0,49	0,65	0,64	0,6
Schwimmende	% WLL	63	63	50	67	38	30	28	27	25	24	22	23	25	33	32	32
Max. Surfen relative STS	m	0,77	0,77	0,71	0,82	0,76	0,79	0,76	0,65	0,85	0,93	0,94	0,81	0,79	0,84	0,83	0,8
Max. Driften relative STS	m	0,63	0,63	0,51	0,61	0,47	0,43	0,43	0,44	0,46	0,46	0,58	0,53	0,45	0,48	0,42	0,4
Max. Tauchen relative STS	m	1,43	1,43	1,48	1,49	1,58	1,74	1,63	1,72	1,70	1,57	1,77	1,86	1,67	1,65	1,61	1,6
Verschiedene Kriterien	%	26	26	24	27	25	26	25	22	28	31	31	27	26	28	28	28

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 128 von 169

Run ID		run121	run126	run131	run136	run141	run146	run151	run156	run161	run166	run171	run176
Wasserstand	m CD												
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	∘N	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	οN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōΝ	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	389	376	410	452	462	417	423	453	559	527	423	461
FSRU	% WLL	58	56	61	68	69	62	63	68	84	79	63	69
Max. Fenderlasten	kN	3385	3368	3111	3197	3224	2879	2542	2458	2333	2271	2546	3178
FSRU	% WLL	80	80	74	76	76	68	60	58	55	54	60	75
Max. Fenderauslenkungen	m	0,36	0,35	0,31	0,32	0,33	0,27	0,23	0,22	0,20	0,20	0,23	0,32
FSRU	% WLL	20	19	17	18	18	15	13	12	11	11	13	18
Max. Dalbenlasten	kN	1399	1460	1367	1315	1381	1414	1598	1766	2075	1953	1615	1566
FSRU	% WLL	24	25	23	22	23	24	27	30	35	33	27	27
Max. Surfen Hochdruckverteilers	m	0,49	0,60	0,76	1,03	1,13	1,03	0,89	0,67	0,63	0,58	0,43	0,59
Max. Driften Hochdruckverteilers	m	0,54	0,55	0,54	0,60	0,57	0,54	0,62	0,67	0,83	0,74	0,60	0,50
Max. Tauchen Hochdruckverteilers	m	0,19	0,20	0,20	0,20	0,20	0,19	0,20	0,21	0,21	0,21	0,19	0,19
Verschiedene Kriterien	%	18	20	25	34	38	34	30	22	28	25	20	20
Max. Leinenlasten	kN	486	488	381	435	440	401	454	482	542	522	425	471
LNGC	% WLL	73	73	57	65	66	60	68	72	81	78	64	70
Max. Fenderlasten	kN	1480	1506	672	455	403	400	347	332	302	311	331	523
Schwimmende	% WLL	45	45	20	14	12	12	10	10	9	9	10	16
Max. Fenderauslenkungen	m	1,42	1,43	0,79	0,59	0,53	0,53	0,48	0,46	0,42	0,43	0,46	0,65
Schwimmende	% WLL	72	72	40	30	27	27	24	23	21	22	23	33
Max. Surfen relative STS	m	0,78	0,82	0,70	0,82	0,78	0,70	0,65	0,65	0,64	0,56	0,64	0,81
Max. Driften relative STS	m	0,62	0,62	0,44	0,40	0,38	0,39	0,42	0,49	0,56	0,54	0,42	0,43
Max. Tauchen relative STS	m	1,32	1,32	1,41	1,60	1,46	1,55	1,64	1,47	1,71	1,79	1,66	1,59
Verschiedene Kriterien	%	26	27	23	27	26	23	22	22	21	19	21	27

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 129 von 169

FSRU in Ballast und LNG-Tanker mit Membrantank 170 Tsd. beladen bei fünfjährlichem Hochwasserstand

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 130 von 169

Run ID		run1	run6	run11	run16	run21	run26	run31	run36	run41	run46	run51	run56
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	ōN	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	ōN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	ōN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	oN												
Strömunggeschwindigkeit	m/s												
Max. Leinenlasten	kN	426	283	263	257	262	265	334	459	522	475	401	544
FSRU	% WLL	64	42	39	38	39	40	50	69	78	71	60	81
Max. Fenderlasten	kN	3077	2945	2308	2356	2273	2098	1888	2040	2105	1854	1983	2620
FSRU	% WLL	73	70	55	56	54	50	45	48	50	44	47	62
Max. Fenderauslenkungen	m	0,30	0,28	0,20	0,21	0,20	0,18	0,16	0,17	0,18	0,15	0,17	0,23
FSRU	% WLL	17	15	11	11	11	10	9	10	10	8	9	13
Max. Dalbenlasten	kN	1162	1036	1002	891	873	1028	1297	1617	1914	1879	1342	1493
FSRU	% WLL	20	18	17	15	15	17	22	27	33	32	23	25
Max. Surfen Hochdruckverteilers	m	0,56	0,39	0,23	0,46	0,59	0,58	0,59	0,59	0,67	0,53	0,52	0,75
Max. Driften Hochdruckverteilers	m	0,33	0,33	0,34	0,33	0,34	0,32	0,36	0,66	0,86	0,73	0,40	0,35
Max. Tauchen Hochdruckverteilers	m	0,13	0,13	0,13	0,12	0,12	0,11	0,11	0,11	0,12	0,12	0,12	0,12
Verschiedene Kriterien	%	19	13	11	15	20	19	20	22	29	24	17	25
Max. Leinenlasten	kN	571	504	426	309	298	390	453	547	623	476	396	522
LNGC	% WLL	85	75	64	46	45	58	68	82	93	71	59	78
Max. Fenderlasten	kN	1183	1215	492	274	212	242	304	534	658	477	307	373
Schwimmende	% WLL	36	37	15	8	6	7	9	16	20	14	9	11
Max. Fenderauslenkungen	m	1,21	1,23	0,62	0,38	0,29	0,34	0,42	0,66	0,78	0,61	0,43	0,51
Schwimmende	% WLL	61	62	31	19	15	17	21	33	39	31	22	26
Max. Surfen relative STS	m	0,39	0,43	0,33	0,33	0,39	0,41	0,52	1,02	1,52	1,09	0,39	0,54
Max. Driften relative STS	m	0,53	0,48	0,36	0,34	0,27	0,29	0,33	0,49	0,70	0,66	0,39	0,33
Max. Tauchen relative STS	m	0,88	0,84	0,86	0,84	0,85	0,79	0,78	1,01	1,18	1,03	0,82	0,89
Verschiedene Kriterien	%	18	16	12	11	13	14	17	34	51	36	13	18

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 131 von 169

Run ID		run61	run66	run71	run76	run81	run86	run91	run96	run101	1	run102	run106	run111	run116	2	run11
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	5	5	2	5	5	5	4	2
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	240	240	240	270	300	330	330	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	18	20	20	21	20	19
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	0,78	0,71	1,01	1,41	1,61	1,58	1,4
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	2,7	2,6	3,8	4,5	4,7	4,6	4,5
Wellenrichtung	ōΝ	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	241,3	240,3	313,5	335,0	339,3	339,4	339
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	2,8	2,8	1,7	1,9	2,1	2,1	2,1
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	1,9	2,1	4,7	11,0	13,8	13,8	13,
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,3
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,
Wellenrichtung	ōΝ	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
s		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,
Strömungrichtung	ōΝ	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	535	427	284	249	252	258	352	512	695	665	508	519	518	691	669	56
FSRU	% WLL	80	64	43	37	38	39	53	77	104	99	76	78	78	103	100	85
Max. Fenderlasten	kN	2980	2887	2286	2246	2165	1978	1819	1837	2090	2052	1820	1758	1889	2589	2568	247
FSRU	% WLL	70	68	54	53	51	47	43	43	49	48	43	42	45	61	61	58
Max. Fenderauslenkungen	m	0,28	0,27	0,20	0,19	0,19	0,17	0,15	0,15	0,18	0,17	0,15	0,14	0,16	0,23	0,23	0,2
FSRU	% WLL	16	15	11	11	10	9	8	8	10	10	8	8	9	13	13	12
Max. Dalbenlasten	kN	1473	1166	1086	966	974	965	1255	1764	1951	1921	1742	1924	1430	1865	1808	155
FSRU	% WLL	25	20	18	16	17	16	21	30	33	33	30	33	24	32	31	26
Max. Surfen Hochdruckverteilers	m	0,74	0,58	0,39	0,25	0,32	0,32	0,37	0,69	0,93	0,90	0,70	0,72	0,70	0,93	0,90	0,7
Max. Driften Hochdruckverteilers	m	0,34	0,34	0,34	0,33	0,33	0,31	0,35	0,65	0,85	0,83	0,72	0,72	0,38	0,33	0,32	0,3
Max. Tauchen Hochdruckverteilers	m	0,13	0,13	0,13	0,12	0,12	0,11	0,11	0,12	0,13	0,13	0,13	0,12	0,12	0,13	0,12	0,1
Verschiedene Kriterien	%	25	19	13	11	11	11	12	23	31	30	24	24	23	31	30	26
Max. Leinenlasten	kN	585	514	440	347	336	414	480	604	684	669	591	513	426	561	553	51
LNGC	% WLL	87	77	66	52	50	62	72	90	102	100	88	77	64	84	83	77
Max. Fenderlasten	kN	888	928	373	245	197	212	265	448	550	529	405	379	272	327	321	29
Schwimmende	% WLL	27	28	11	7	6	6	8	13	17	16	12	11	8	10	10	9
Max. Fenderauslenkungen	m	0,99	1,01	0,50	0,34	0,27	0,29	0,37	0,58	0,68	0,66	0,54	0,52	0,38	0,45	0,45	0,4
Schwimmende	% WLL	50	51	25	17	14	15	19	29	34	33	27	26	19	23	23	20
Max. Surfen relative STS	m	0,39	0,39	0,33	0,32	0,38	0,36	0,58	1,26	1,77	1,68	1,14	1,12	0,38	0,55	0,53	0,4
Max. Driften relative STS	m	0,41	0,41	0,31	0,34	0,28	0,29	0,32	0,46	0,61	0,61	0,57	0,59	0,37	0,31	0,32	0,3
Max. Tauchen relative STS	m	0,85	0,83	0,84	0,82	0,84	0,80	0,80	1,03	1,16	1,15	1,11	1,08	0,80	0,87	0,86	0,8
Verschiedene Kriterien	%	14	14	11	11	13	12	19	42	59	56	38	37	13	18	18	16

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 132 von 169

Run ID		run121	run126	run131	run136	run141	run146	run151	run156	run161	run166	run171	run176
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	ōN	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	ōN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	ōN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōN	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	265	249	269	332	386	371	360	420	497	490	301	383
FSRU	% WLL	40	37	40	50	58	55	54	63	74	73	45	57
Max. Fenderlasten	kN	3093	2887	2196	2497	2364	2256	1914	1958	1928	1725	2067	2455
FSRU	% WLL	73	68	52	59	56	53	45	46	46	41	49	58
Max. Fenderauslenkungen	m	0,30	0,27	0,19	0,22	0,21	0,20	0,16	0,16	0,16	0,14	0,18	0,22
FSRU	% WLL	17	15	10	12	11	11	9	9	9	8	10	12
Max. Dalbenlasten	kN	1020	1111	845	879	892	1071	1333	1649	1805	1800	1179	1049
FSRU	% WLL	17	19	14	15	15	18	23	28	31	31	20	18
Max. Surfen Hochdruckverteilers	m	0,27	0,40	0,59	0,92	1,03	0,99	0,97	0,89	0,90	0,67	0,31	0,52
Max. Driften Hochdruckverteilers	m	0,35	0,32	0,33	0,32	0,36	0,33	0,35	0,68	0,84	0,73	0,40	0,34
Max. Tauchen Hochdruckverteilers	m	0,13	0,12	0,13	0,13	0,12	0,11	0,11	0,12	0,13	0,12	0,12	0,13
Verschiedene Kriterien	%	12	13	20	31	34	33	32	30	30	24	13	17
Max. Leinenlasten	kN	521	458	359	243	263	301	407	504	558	487	347	448
LNGC	% WLL	78	68	54	36	39	45	61	75	83	73	52	67
Max. Fenderlasten	kN	1273	1346	503	283	191	215	274	491	582	433	309	370
Schwimmende	% WLL	38	41	15	9	6	6	8	15	18	13	9	11
Max. Fenderauslenkungen	m	1,27	1,33	0,63	0,39	0,26	0,30	0,38	0,62	0,71	0,57	0,43	0,50
Schwimmende	% WLL	64	67	32	20	13	15	19	31	36	29	22	25
Max. Surfen relative STS	m	0,45	0,38	0,32	0,33	0,41	0,39	0,48	1,00	1,34	0,95	0,39	0,50
Max. Driften relative STS	m	0,59	0,52	0,35	0,30	0,26	0,28	0,33	0,52	0,67	0,65	0,33	0,32
Max. Tauchen relative STS	m	0,87	0,75	0,81	0,79	0,83	0,79	0,83	0,99	1,15	1,00	0,78	0,86
Verschiedene Kriterien	%	20	17	12	11	14	13	16	33	45	32	13	17

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 133 von 169

FSRU beladen und LNG-Tanker mit Membrantank 170 Tsd. in Ballast bei fünfjährlichem Hochwasserstand

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 134 von 169

Run ID		run1	run6	run11	run16	run21	run26	run31	run36	run41	run46	run51	run5
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	oN	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	ōN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,
Wellenrichtung	ōN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,
Strömungrichtung	ōN												
Strömunggeschwindigkeit	m/s												
Max. Leinenlasten	kN	481	309	242	250	247	222	357	500	527	459	384	56
FSRU	% WLL	72	46	36	37	37	33	53	75	79	69	57	84
Max. Fenderlasten	kN	3047	2984	2436	2413	2141	1970	2221	2274	2065	1925	1978	252
FSRU	% WLL	72	71	58	57	51	47	53	54	49	46	47	60
Max. Fenderauslenkungen	m	0,30	0,28	0,21	0,21	0,18	0,16	0,19	0,20	0,17	0,16	0,17	0,2
FSRU	% WLL	16	16	12	12	10	9	11	11	10	9	9	12
Max. Dalbenlasten	kN	1318	1242	927	898	862	858	1354	1773	2066	1814	1273	153
FSRU	% WLL	22	21	16	15	15	15	23	30	35	31	22	26
Max. Surfen Hochdruckverteilers	m	0,65	0,41	0,24	0,46	0,58	0,45	0,49	0,36	0,34	0,30	0,50	0,7
Max. Driften Hochdruckverteilers	m	0,27	0,26	0,24	0,23	0,22	0,22	0,32	0,59	0,83	0,67	0,31	0,2
Max. Tauchen Hochdruckverteilers	m	0,13	0,14	0,15	0,14	0,13	0,14	0,15	0,15	0,15	0,15	0,14	0,1
Verschiedene Kriterien	%	22	14	8	15	19	15	16	20	28	22	17	26
Max. Leinenlasten	kN	560	502	372	309	283	313	398	472	460	415	409	51
LNGC	% WLL	84	75	56	46	42	47	59	71	69	62	61	77
Max. Fenderlasten	kN	1343	1393	691	408	284	293	301	498	415	347	308	48
Schwimmende	% WLL	40	42	21	12	9	9	9	15	13	10	9	15
Max. Fenderauslenkungen	m	1,32	1,36	0,81	0,54	0,39	0,41	0,42	0,63	0,55	0,47	0,43	0,6
Schwimmende	% WLL	67	69	41	27	20	20	21	32	28	24	22	31
Max. Surfen relative STS	m	0,56	0,55	0,48	0,65	0,61	0,45	0,56	0,75	0,69	0,48	0,47	0,6
Max. Driften relative STS	m	0,60	0,60	0,41	0,34	0,27	0,26	0,30	0,45	0,53	0,44	0,33	0,3
Max. Tauchen relative STS	m	0,92	0,87	0,91	0,92	0,91	0,82	0,76	0,90	1,17	1,02	0,74	0,8
Verschiedene Kriterien	%	20	20	16	22	20	15	19	25	23	16	16	21

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 135 von 169

Run ID		run61	run66	run71	run76	run81	run86	run91	run96	run101	run106	run111	run116	1	run11
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	5	5	5	5	4	2
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	240	270	300	330	330	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21	20	19
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61	1,53	1,4
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7	4,6	4,5
Wellenrichtung	οN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3	339,5	339
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1	2,1	2,:
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8	13,8	13,
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,3
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,
Wellenrichtung	ºN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,
s		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,
Strömungrichtung	oN	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,
Max. Leinenlasten	kN	599	460	342	241	240	222	399	546	541	494	500	720	669	61
FSRU	% WLL	90	69	51	36	36	33	60	82	81	74	75	108	100	91
Max. Fenderlasten	kN	2966	2819	2284	2218	1973	1855	2107	2076	1824	1776	1918	2398	2374	234
FSRU	% WLL	70	67	54	52	47	44	50	49	43	42	45	57	56	55
Max. Fenderauslenkungen	m	0,28	0,26	0,20	0,19	0,17	0,15	0,18	0,18	0,15	0,14	0,16	0,21	0,21	0,2
FSRU	% WLL	16	14	11	11	9	8	10	10	8	8	9	12	12	1:
Max. Dalbenlasten	kN	1633	1260	959	932	923	864	1367	1895	2050	1921	1380	1937	1809	166
FSRU	% WLL	28	21	16	16	16	15	23	32	35	33	23	33	31	28
Max. Surfen Hochdruckverteilers	m	0,81	0,61	0,46	0,24	0,28	0,23	0.29	0,50	0,50	0,54	0,68	0,96	0,91	0,8
Max. Driften Hochdruckverteilers	m	0,27	0,26	0,23	0,21	0,20	0,20	0,29	0,59	0,79	0,67	0,30	0,24	0,25	0,2
Max. Tauchen Hochdruckverteilers	m	0,13	0,14	0,15	0,14	0,14	0,13	0,15	0,15	0,15	0,15	0,14	0,14	0,14	0,1
Verschiedene Kriterien	%	27	20	15	8	9	8	10	20	26	22	23	32	30	28
Max. Leinenlasten	kN	564	489	398	315	314	362	428	516	440	406	466	547	517	48
LNGC	% WLL	84	73	60	47	47	54	64	77	66	61	70	82	77	72
Max. Fenderlasten	kN	1177	1195	609	335	270	277	259	389	302	290	292	420	386	34
Schwimmende	% WLL	35	36	18	10	8	8	8	12	9	9	9	13	12	10
Max. Fenderauslenkungen	m	1,20	1.21	0,73	0,46	0,37	0,38	0.36	0,52	0,42	0.40	0,41	0.55	0,52	0,4
Schwimmende	% WLL	61	61	37	23	19	19	18	27	21	20	20	28	26	24
Max. Surfen relative STS	m	0,51	0.52	0,42	0,54	0,53	0.40	0,58	0.77	0,70	0,56	0.46	0.61	0,57	0,5
Max. Driften relative STS	m	0,31	0,52	0.36	0.29	0,33	0.24	0,38	0.39	0,70	0,42	0,40	0.27	0.26	0,3
Max. Tauchen relative STS	m	0,49	0,32	0,89	0,23	0,23	0,83	0,74	0,33	1,10	1,03	0,31	0,27	0,83	0,2
Verschiedene Kriterien	%	17	17	14	18	18	13	19	26	23	1,03	15	20	19	17

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 136 von 169

Run ID		run121	run126	run131	run136	run141	run146	run151	run156	run161	run166	run171	run176
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	5	5	5	5
Windrichtung	ōN	0	30	60	90	120	150	180	210	240	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	20	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	1,01	1,41	1,61
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	3,8	4,5	4,7
Wellenrichtung	ōΝ	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	313,5	335,0	339,3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	1,7	1,9	2,1
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	4,7	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	∘N	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōN	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	283	255	256	349	383	336	343	447	531	470	320	395
FSRU	% WLL	42	38	38	52	57	50	51	67	79	70	48	59
Max. Fenderlasten	kN	2969	2900	2345	2369	2161	2067	1952	2031	1906	1837	1963	2419
FSRU	% WLL	70	69	55	56	51	49	46	48	45	43	46	57
Max. Fenderauslenkungen	m	0,28	0,27	0,20	0,21	0,19	0,18	0,16	0,17	0,16	0,15	0,16	0,21
FSRU	% WLL	16	15	11	12	10	10	9	9	9	8	9	12
Max. Dalbenlasten	kN	1195	1361	1003	1014	906	941	1304	1751	1961	1763	1223	1079
FSRU	% WLL	20	23	17	17	15	16	22	30	33	30	21	18
Max. Surfen Hochdruckverteilers	m	0,36	0,41	0,62	0,96	1,02	0,93	0,91	0,69	0,61	0,53	0,31	0,55
Max. Driften Hochdruckverteilers	m	0,26	0,25	0,23	0,24	0,23	0,22	0,31	0,60	0,83	0,69	0,33	0,23
Max. Tauchen Hochdruckverteilers	m	0,14	0,14	0,15	0,14	0,14	0,13	0,15	0,15	0,15	0,15	0,14	0,15
Verschiedene Kriterien	%	12	14	21	32	34	31	30	23	28	23	11	18
Max. Leinenlasten	kN	518	454	336	381	336	318	438	491	451	405	366	438
LNGC	% WLL	77	68	50	57	50	47	65	73	67	61	55	65
Max. Fenderlasten	kN	1405	1372	634	360	253	259	273	370	331	279	314	465
Schwimmende	% WLL	42	41	19	11	8	8	8	11	10	8	9	14
Max. Fenderauslenkungen	m	1,37	1,34	0,75	0,49	0,35	0,36	0,38	0,50	0,46	0,39	0,43	0,59
Schwimmende	% WLL	69	68	38	25	18	18	19	25	23	20	22	30
Max. Surfen relative STS	m	0,53	0,49	0,48	0,66	0,58	0,43	0,47	0,65	0,63	0,44	0,42	0,54
Max. Driften relative STS	m	0,55	0,60	0,36	0,32	0,24	0,23	0,26	0,40	0,49	0,41	0,32	0,29
Max. Tauchen relative STS	m	0,84	0,76	0,85	0,90	0,81	0,79	0,74	0,87	1,10	1,03	0,70	0,81
Verschiedene Kriterien	%	18	20	16	22	19	14	16	22	21	15	14	18

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 137 von 169

FSRU in Ballast und LNG-Tanker mit Kugeltank (Moss) 177 Tsd. beladen bei Wasserstand SKN

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 138 von 169

Run ID		run1	run6	run11	run16	run21	run26	run31	run36	run37	1	run38	run41	run42	run43	2	run44	run46	run47	run48	run49	3	run50	run51	run
																									
Wasserstand	m CD																								₩
TD.		5	5	5	5	5	5	5	5	2	1	4	5	2	1	_	0.5	5	2	1	0.5	0	0.2	5	H
TR	ONI						_		_			1			-	1	0,5		270	270	0,5 270	-	0,2		3
Windrichtung	οN	0	30	60	90	120	150	180 17	210	210	210	210	240	240	240	240	240	270	_			270	270	300	3
Windgeschwindigkeit	m/s	19	17	14	15	14	14		19	18	17	16	20	18	17	16	16	20	18	17	15	15	14	20	-
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98 3,7	0,92	0,83	0,80	0,78	0,79 2,7	0,71 2,6	0,60	0,55 2,4	0,55	1,01	0,91	0,86	0,78	0,78	0,68	1,41	1
Wellenperiode Tp	s ºN	4,5	3,9	3,4 51,2	3,4	3,3	3,4		3,4	3,3 172,5	3,3 172,5	3,2 172,5	2,7	240,3	2,5		2,4	3,8 313,5	3,7	3,6 312,6	3,5 312,6	3,5 312,6	3,4 312,6	4,5	3
Wellenrichtung	ΞIV	348,1	10,9 2,8	3,3	91,3	122,2 3,5	139,0 2,2	151,3 1,7	171,9	1,5	1,5	1,5	2,8	2,8	240,3	240,3	2,8	1,7	312,6 1,7	1,7	1,7		1,7	335,0 1,9	3
gamma		2,4 9,3	5,3	5,5	5,8	3,5 7,4	10,1	8,3	1,5 4,5	4,5	4,5	4,5	1,9	2,8	2,8	2,8	2,8	4,7	4,6	4,6	4,6	1,7 4,6	4,6	11,0	1
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	(
Wellenperiode Tp		12,1	12.1	12,1	12,1	12,1	12,1	12.1	12.1	12.1	12,1	12,1	12.1	12.1	12.1	12,1	12,1	12,1	12,1	12.1	12.1	12.1	12,1	12,1	1
Wellenrichtung	oN 5	357,0	357,0	357,0	357,0	357,0	357,0	357,0		357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	3
gamma	-14	1.5	1,5	1,5	1.5	1,5	1,5	1.5	1,5	1.5	1,5	1,5	1,5	1.5	1,5	1,5	1.5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	۲
gaiiiiia		15.4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	1
Strömungrichtung	∘N	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	13,4	۲
AX Strömunggeschwindigkeit	m/s																								╁
50 Max. Leinenlasten	kN	434	349	339	373	373	365	416	580	517	501	489	650	607	525	487	487	638	548	510	471	469	436	506	t
FSRU	% WLL	65	52	51	56	56	55	62	87	77	75	73	97	91	78	73	73	95	82	76	70	70	65	76	╁
99 Max. Fenderlasten	kN	3499	3294	2738	2585	2706	2357	2517	2565	2617	2607	2600	2340	2242	2201	2072	2070	2192	2155	2156	2175	2178	2248	2387	1 2
FSRU	% WLL	83	78	65	61	64	56	59	61	62	62	61	55	53	52	49	49	52	51	51	51	51	53	56	ť
38 Max. Fenderauslenkungen	m	0,38	0,34	0,25	0,23	0,25	0,21	0,22	0,23	0,23	0,23	0,23	0,20	0,19	0,19	0,18	0,18	0,19	0,18	0,18	0,19	0,19	0,19	0,21	
FSRU	% WLL	21	19	14	13	14	11	12	13	13	13	13	11	11	10	10	10	10	10	10	10	10	11	12	۲
65 Max. Dalbenlasten	kN	1310	1357	1258	1208	1223	1224	1500	2023	1921	1840	1782	2565	2280	1984	1846	1844	2515	2168	2001	1857	1850	1713	1957	1
FSRU	% WLL	22	23	21	21	21	21	25	34	33	31	30	44	39	34	31	31	43	37	34	32	31	29	33	ť
82 Max. Surfen Hochdruckverteilers	m	0,54	0,27	0,36	0,69	0,78	0,64	0,82	0,72	0,66	0,61	0,58	0,68	0,66	0,61	0,52	0,52	0,62	0,55	0,48	0,48	0,48	0,41	0,63	
01 Max. Driften Hochdruckverteilers	m	0,49	0,53	0,51	0,52	0,78	0,50	0,62	0,72	0.77	0.74	0,72	1,01	0.96	0,85	0,75	0,75	0,87	0,33	0,75	0.67	0,48	0,59	0,58	
19 Max. Tauchen Hochdruckverteilers	m	0,18	0,19	0,18	0,18	0,18	0,17	0,17	0,16	0,16	0,16	0,16	0,16	0,15	0,16	0,16	0,16	0,16	0,15	0,15	0,15	0,15	0,15	0,15	
Verschiedene Kriterien	%	18	18	17	23	26	21	27	29	26	25	24	34	32	28	25	25	29	26	25	22	22	20	21	Ť
03 Max. Leinenlasten	kN	428	381	298	370	380	323	566	876	689	669	654	1003	923	800	669	667	883	767	759	676	669	513	529	Τ.
LNGC	% WLL	64	57	45	55	57	48	85	131	103	100	98	150	138	120	100	100	132	115	113	101	100	77	79	t
09 Max. Fenderlasten	kN	1309	1308	540	310	283	233	383	395	378	349	328	369	312	326	306	305	309	303	277	282	281	270	264	t
Schwimmende	% WLL	39	39	16	9	9	7	12	12	11	11	10	11	9	10	9	9	9	9	8	8	8	8	8	t
30 Max. Fenderauslenkungen	m	1,30	1,30	0,67	0,43	0,39	0,32	0,51	0,53	0,51	0,48	0,45	0,50	0,43	0,45	0,42	0,42	0,43	0,42	0,38	0,39	0,39	0,37	0,37	t
Schwimmende	% WLL	65	65	34	22	20	16	26	27	26	24	23	25	22	23	21	21	22	21	19	20	20	19	19	Ħ
18 Max. Surfen relative STS	m	0,62	0,55	0,48	0,68	0,60	0,53	0,86	0,99	1,10	1,00	0,92	1,10	1,18	1,05	0,82	0,82	1,18	0,97	0,81	0,79	0,78	0,66	0,70	t
97 Max. Driften relative STS	m	0,76	0,74	0,49	0,49	0,47	0,47	0,73	0,82	0,79	0,75	0,73	0,95	0,97	0,89	0,71	0,71	0,95	0,76	0,75	0,73	0,78	0,63	0,61	
45 Max. Tauchen relative STS	m	1,15	1,25	1,17	1,33	1,27	1,26	1,31	1,34	1,32	1,38	1,42	1,39	1,45	1,40	1,35	1,34	1,28	1,35	1,27	1,25	1,25	1,25	1,22	t
Verschiedene Kriterien	%	25	25	16	23	20	18	29	33	37	33	31	37	39	35	27	27	39	32	27	26	26	22	23	Ħ

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 139 von 169

Run ID		run61	run66	run71	run76	run81	run86	run91	run96	run97	4	run98	run101	run102	run103	5	run104	run106	run107	6	run108	run111	run116	7	run11
Wasserstand	m CD																								
TR		5	5	5	5	5	5	5	5	2	2	1	5	2	1	1	0,5	5	2	2	1	5	5	3	2
Windrichtung	∘N	0	30	60	90	120	150	180	210	210	210	210	240	240	240	240	240	270	270	270	270	300	330	330	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	18	18	16	20	18	17	16	16	20	18	18	17	20	21	20	19
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,83	0,83	0,78	0,79	0,71	0,60	0,57	0,55	1,01	0,91	0,89	0,86	1,41	1,61	1,50	1,43
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	3,3	3,3	3,2	2,7	2,6	2,5	2,4	2,4	3,8	3,7	3,7	3,6	4,5	4,7	4,6	4,5
Wellenrichtung	∘N	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	172,5	172,5	172,5	241,5	240,3	240,3	240,3	240,3	313,5	312,6	312,6	312,6	335,0	339,3	339,5	339,
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	1,5	1,5	1,5	2,8	2,8	2,8	2,8	2,8	1,7	1,7	1,7	1,7	1,9	2,1	2,1	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	4,5	4,5	4,5	1,9	2,1	2,1	2,1	2,1	4,7	4,6	4,6	4,6	11,0	13,8	13,8	13,7
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	∘N	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōN	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	534	362	351	363	362	357	413	616	551	549	509	669	608	544	509	491	646	593	562	521	583	736	669	622
FSRU	% WLL	80	54	52	54	54	53	62	92	82	82	76	100	91	81	76	73	97	89	84	78	87	110	100	93
Max. Fenderlasten	kN	3365	3139	2640	2446	2635	2280	2444	2112	2352	2359	2514	2230	2060	2016	2086	2122	2097	2106	2064	2009	2234	2765	2659	2585
FSRU	% WLL	80	74	62	58	62	54	58	50	56	56	59	53	49	48	49	50	50	50	49	47	53	65	63	61
Max. Fenderauslenkungen	m	0,35	0,31	0,24	0,22	0,24	0,20	0,22	0,18	0,20	0,21	0,22	0,19	0,17	0,17	0,18	0,18	0,18	0,18	0,17	0,17	0,19	0,25	0,24	0,23
FSRU	% WLL	19	17	13	12	13	11	12	10	11	11	12	11	10	9	10	10	10	10	10	9	11	14	13	13
Max. Dalbenlasten	kN	1464	1410	1383	1342	1306	1352	1516	2103	2002	1999	1943	2615	2394	2151	2015	1946	2489	2329	2213	2060	2003	1980	1807	1687
FSRU	% WLL	25	24	23	23	22	23	26	36	34	34	33	44	41	37	34	33	42	40	38	35	34	34	31	29
Max. Surfen Hochdruckverteilers	m	0,69	0,44	0,28	0,40	0,49	0,37	0,59	0,53	0,52	0,53	0,53	0,66	0,59	0,58	0,54	0,53	0,69	0,61	0,59	0,55	0,79	0,94	0,86	0,83
Max. Driften Hochdruckverteilers	m	0,50	0,50	0,50	0,51	0,53	0,52	0,61	0,88	0,77	0,77	0,72	1,03	0,93	0,84	0,78	0,74	0,88	0,82	0,78	0,73	0,57	0,53	0,50	0,48
Max. Tauchen Hochdruckverteilers	m	0,18	0,19	0,18	0,18	0,17	0,17	0,16	0,16	0,16	0,16	0,15	0,16	0,16	0,16	0,16	0,16	0,17	0,15	0,15	0,15	0,15	0,18	0,17	0,16
Verschiedene Kriterien	%	23	17	17	17	18	17	20	29	26	26	24	34	31	28	26	25	29	27	26	24	26	31	29	27
Max. Leinenlasten	kN	443	329	255	333	360	322	532	823	670	669	649	904	778	734	669	636	784	721	669	601	502	429	397	374
LNGC	% WLL	66	49	38	50	54	48	79	123	100	100	97	135	116	110	100	95	117	108	100	90	75	64	59	56
Max. Fenderlasten	kN	948	993	361	297	245	179	250	253	255	255	255	259	210	207	206	205	229	229	219	206	193	361	321	293
Schwimmende	% WLL	29	30	11	9	7	5	8	8	8	8	8	8	6	6	6	6	7	7	7	6	6	11	10	9
Max. Fenderauslenkungen	m	1,03	1,07	0,49	0,41	0,34	0,25	0,35	0,35	0,35	0,35	0,35	0,36	0,29	0,29	0,29	0,29	0,32	0,32	0,30	0,29	0,27	0,49	0,44	0,43
Schwimmende	% WLL	52	54	25	21	17	13	18	18	18	18	18	18	15	15	14	14	16	16	15	14	14	25	22	21
Max. Surfen relative STS	m	0,65	0,46	0,44	0,58	0,57	0,50	0,76	0,90	0,86	0,86	0,82	0,98	0,92	0,93	0,88	0,85	0,99	0,82	0,79	0,75	0,58	0,65	0,63	0,62
Max. Driften relative STS	m	0,68	0,54	0,44	0,45	0,46	0,44	0,54	0,74	0,67	0,66	0,60	0,82	0,76	0,73	0,69	0,66	0,76	0,67	0,65	0,62	0,53	0,49	0,47	0,45
Max. Tauchen relative STS	m	1,05	1,17	1,07	1,19	1,19	1,15	1,18	1,28	1,21	1,21	1,19	1,22	1,31	1,32	1,31	1,30	1,23	1,18	1,19	1,19	1,13	1,14	1,07	1,03
Verschiedene Kriterien	%	23	18	15	19	19	17	25	30	29	29	27	33	31	31	29	28	33	27	26	25	19	22	21	21

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 140 von 169

Run ID		run121	run126	run131	run136	run141	run146	run151	run156	8	run157	run161	run162	9	run163	run166	run167	10	run168	run171	run176
Wasserstand	m CD																				-
Wasserstand	шсь																				
TR		5	5	5	5	5	5	5	5	4	2	5	2	1	1	5	2	2	1	5	5
Windrichtung	ºN	0	30	60	90	120	150	180	210	210	210	240	240	240	240	270	270	270	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	19	18	20	18	17	17	20	18	18	17	20	21
Wellenhöhe Hs	m	1.51	1.20	0.92	0.96	0,84	0.78	0.98	0.92	0.89	0,83	0.79	0.71	0.63	0,60	1.01	0.91	0.90	0.86	1.41	1.61
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	3,4	3,3	2,7	2,6	2,5	2,5	3,8	3,7	3,7	3,6	4,5	4,7
Wellenrichtung	ºN	348.1	10.9	51.2	91.3	122.2	139.0	151.3	171.9	172,1	172.5	241.5	240.3	240.3	240,3	313.5	312.6	312.6	312.6	335.0	339.3
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	1,5	1,5	2,8	2,8	2,8	2,8	1,7	1,7	1,7	1,7	1,9	2,1
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	4,5	4,5	1,9	2,1	2,1	2,1	4,7	4,6	4,6	4,6	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	∘N	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ºN	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	350	369	354	465	489	439	493	543	519	478	674	598	555	541	609	601	584	528	462	420
FSRU	% WLL	52	55	53	70	73	66	74	81	78	71	101	89	83	81	91	90	87	79	69	63
Max. Fenderlasten	kN	3485	3322	2738	2758	2710	2393	2245	2252	2271	2303	2138	1867	1887	1893	1941	2005	2019	2065	2274	2873
FSRU	% WLL	82	79	65	65	64	57	53	53	54	54	51	44	45	45	46	47	48	49	54	68
Max. Fenderauslenkungen	m	0,37	0,34	0,25	0,25	0,24	0,21	0,19	0,19	0,20	0,20	0,18	0,15	0,16	0,16	0,16	0,17	0,17	0,17	0,20	0,27
FSRU	% WLL	21	19	14	14	14	12	11	11	11	11	10	8	9	9	9	9	9	10	11	15
Max. Dalbenlasten	kN	1228	1249	1279	1388	1422	1376	1628	2005	1938	1821	2395	2128	1951	1893	2234	2130	2079	1913	1822	1427
FSRU	% WLL	21	21	22	24	24	23	28	34	33	31	41	36	33	32	38	36	35	32	31	24
Max. Surfen Hochdruckverteilers	m	0,33	0,51	0,69	1,07	1,13	1,01	1,14	0,80	0,79	0,78	0,77	0,72	0,71	0,70	0,72	0,69	0,67	0,61	0,38	0,54
Max. Driften Hochdruckverteilers	m	0,47	0,51	0,53	0,52	0,53	0,51	0,59	0,87	0,82	0,73	1,02	0,95	0,86	0,84	0,90	0,85	0,82	0,73	0,60	0,54
Max. Tauchen Hochdruckverteilers	m	0,19	0,20	0,18	0,18	0,18	0,17	0,17	0,16	0,16	0,15	0,16	0,16	0,16	0,16	0,16	0,15	0,15	0,15	0,15	0,19
Verschiedene Kriterien	%	16	17	23	36	38	34	38	29	27	26	34	32	29	28	30	28	27	24	20	18
Max. Leinenlasten	kN	411	423	310	432	444	333	459	712	669	595	839	750	669	642	783	695	669	586	473	320
LNGC	% WLL	61	63	46	65	66	50	69	106	100	89	125	112	100	96	117	104	100	88	71	48
Max. Fenderlasten	kN	1566	1472	715	318	207	202	296	302	291	272	289	223	234	238	209	193	194	197	217	458
Schwimmende	% WLL	47	44	22	10	6	6	9	9	9	8	9	7	7	7	6	6	6	6	7	14
Max. Fenderauslenkungen	m	1,47	1,42	0,83	0,44	0,29	0,28	0,41	0,42	0,40	0,38	0,40	0,31	0,33	0,33	0,29	0,27	0,27	0,27	0,30	0,59
Schwimmende	% WLL	74	72	42	22	15	14	21	21	20	19	20	16	16	17	15	14	14	14	15	30
Max. Surfen relative STS	m	0,55	0,44	0,49	0,56	0,53	0,44	0,62	0,83	0,82	0,81	0,94	0,80	0,78	0,77	0,87	0,67	0,65	0,57	0,62	0,59
Max. Driften relative STS	m	0,83	0,78	0,58	0,46	0,41	0,40	0,58	0,76	0,73	0,69	0,84	0,74	0,72	0,72	0,81	0,73	0,71	0,64	0,53	0,51
Max. Tauchen relative STS	m	1,05	1,13	1,13	1,25	1,14	1,09	1,20	1,22	1,21	1,19	1,23	1,29	1,28	1,27	1,20	1,21	1,20	1,18	1,12	1,18
Verschiedene Kriterien	%	28	26	19	19	18	15	21	28	27	27	31	27	26	26	29	24	24	21	21	20

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 141 von 169

IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 142 von 169

FSRU beladen und LNG-Tanker mit Kugeltank (Moss) 177 Tsd. in Ballast bei Wasserstand SKN

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 143 von 169

Run ID		run1	run6	run11	run16	run21	run26	run31	run36	run37	1	run38	run41	run42	run43	2	run44	run46	run47	run48	run49	3	run50	run51	run56	4	run57
Wasserstand	m CD																										
TR		5	5	5	5	5	5	5	5	2	1	1	5	2	1	1	0,5	5	2	1	0,5	0	0,2	5	5	5	2
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	210	210	210	240	240	240	240	240	270	270	270	270	270	270	300	330	330	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	18	17	16	20	18	17	16	16	20	18	17	15	15	14	20	21	21	19
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,83	0,80	0,78	0,79	0,71	0,60	0,57	0,55	1,01	0,91	0,86	0,78	0,74	0,68	1,41	1,61	1,59	1,43
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	3,3	3,3	3,2	2,7	2,6	2,5	2,4	2,4	3,8	3,7	3,6	3,5	3,5	3,4	4,5	4,7	4,7	4,5
Wellenrichtung	ōΝ	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	172,5	172,5	172,5	241,5	240,3	240,3	240,3	240,3	313,5	312,6	312,6	312,6	312,6	312,6	335,0	339,3	339,4	339,6
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	1,5	1,5	1,5	2,8	2,8	2,8	2,8	2,8	1,7	1,7	1,7	1,7	1,7	1,7	1,9	2,1	2,1	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	4,5	4,5	4,5	1,9	2,1	2,1	2,1	2,1	4,7	4,6	4,6	4,6	4,6	4,6	11,0	13,8	13,8	13,7
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	∘N	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	ōΝ																										
Strömunggeschwindigkeit	m/s																										
Max. Leinenlasten	kN	475	356	347	392	409	391	433	612	527	508	500	646	544	481	456	439	626	516	468	441	439	435	477	684	669	557
FSRU	% WLL	71	53	52	59	61	59	65	91	79	76	75	97	81	72	68	66	94	77	70	66	66	65	71	102	100	83
Max. Fenderlasten	kN	3532	3371	2962	2970	2893	2812	2694	2666	2429	2473	2491	2432	2399	2556	2648	2711	2536	2606	2661	2712	2750	2813	2738	3003	3007	3035
FSRU	% WLL	84	80	70	70	68	66	64	63	57	58	59	57	57	60	63	64	60	62	63	64	65	67	65	71	71	72
Max. Fenderauslenkungen	m	0,39	0,36	0,28	0,28	0,27	0,26	0,24	0,24	0,21	0,22	0,22	0,21	0,21	0,23	0,24	0,25	0,23	0,23	0,24	0,25	0,25	0,26	0,25	0,29	0,29	0,29
FSRU	% WLL	22	20	16	16	15	14	14	14	12	12	12	12	12	13	13	14	13	13	13	14	14	14	14	16	16	16
Max. Dalbenlasten	kN	1456	1287	1317	1604	1446	1440	1663	2123	1861	1789	1758	2546	2156	1908	1773	1680	2467	2045	1841	1730	1722	1709	1784	1852	1837	1728
FSRU	% WLL	25	22	22	27	25	24	28	36	32	30	30	43	37	32	30	29	42	35	31	29	29	29	30	31	31	29
Max. Surfen Hochdruckverteilers	m	0,59	0,36	0,44	0,75	0,90	0,62	0,65	0,72	0,63	0,54	0,50	0,73	0,65	0,47	0,42	0,38	0,57	0,47	0,42	0,38	0,36	0,34	0,63	0,88	0,87	0,74
Max. Driften Hochdruckverteilers	m	0,46	0,45	0,49	0,52	0,54	0,54	0,59	0,76	0,69	0,67	0,67	0,96	0,79	0,71	0,66	0,63	0,87	0,71	0,67	0,64	0,63	0,62	0,58	0,50	0,50	0,52
Max. Tauchen Hochdruckverteilers	m	0,17	0,19	0,19	0,19	0,18	0,20	0,21	0,21	0,23	0,23	0,23	0,23	0,21	0,21	0,21	0,21	0,23	0,21	0,21	0,21	0,21	0,21	0,20	0,19	0,19	0,19
Verschiedene Kriterien	%	20	15	16	25	30	21	22	25	23	22	22	32	26	24	22	21	29	24	22	21	21	21	21	29	29	25
Max. Leinenlasten	kN	494	457	465	556	527	475	540	789	727	669	644	982	808	701	669	646	918	726	711	688	669	637	640	510	502	449
LNGC	% WLL	74	68	69	83	79	71	81	118	109	100	96	147	121	105	100	97	137	109	106	103	100	95	96	76	75	67
Max. Fenderlasten	kN	1525	1413	663	538	357	370	441	465	382	396	401	440	313	319	327	333	340	314	343	364	400	460	389	540	539	532
Schwimmende	% WLL	46	43	20	16	11	11	13	14	12	12	12	13	9	10	10	10	10	9	10	11	12	14	12	16	16	16
Max. Fenderauslenkungen	m	1,45	1,37	0,78	0,66	0,49	0,50	0,57	0,59	0,51	0,53	0,53	0,57	0,43	0,44	0,45	0,46	0,47	0,44	0,47	0,49	0,53	0,59	0,52	0,66	0,66	0,66
Schwimmende	% WLL	73	69	39	34	25	25	29	30	26	27	27	29	22	22	23	23	23	22	24	25	27	30	26	34	34	33
Max. Surfen relative STS	m	0,65	0,73	0,69	0,78	0,77	0,63	0,77	1,30	1,07	0,98	0,94	1,52	1,15	1,02	0,94	0,88	1,16	0,99	0,95	0,85	0,87	0,89	0,84	0,76	0,75	0,73
Max. Driften relative STS	m	0,81	0,81	0,63	0,72	0,58	0,55	0,69	0,90	0,86	0,82	0,80	0,98	0,88	0,80	0,77	0,75	0,94	0,79	0,73	0,69	0,68	0,68	0,66	0,56	0,57	0,60
Max. Tauchen relative STS	m	1,45	1,34	1,61	1,79	1,73	1,86	1,93	2,13	2,15	2,16	2,16	2,23	2,13	2,10	2,11	2,11	2,20	2,08	2,06	2,02	1,98	1,92	1,86	1,73	1,75	1,85
Verschiedene Kriterien	%	27	27	23	26	26	21	26	43	36	33	31	51	38	34	31	29	39	33	32	28	29	30	28	25	25	24

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie						
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06						
TES-Code: TES-WHV-VGN-FSRU		Seite 144 von 169						

Run ID		run61	run66	run71	run76	run81	run86	run91	run96	run97	5	run98	run101	run102	6	run103	run106	run107	7	run108	run111	run116	run117	8	run11
Wasserstand	m CD																								┼
VVasserstaria	III CD																								+
TR		5	5	5	5	5	5	5	5	2	2	1	5	2	1	1	5	2	2	1	5	5	2	2	1
Windrichtung	₽N	0	30	60	90	120	150	180	210	210	210	210	240	240	240	240	270	270	270	270	300	330	330	330	33
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	18	17	16	20	18	17	17	20	18	18	17	20	21	19	18	1
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,83	0,83	0,78	0,79	0,71	0,63	0,60	1,01	0,91	0,90	0,86	1,41	1,61	1,43	1,41	1,3
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	3,3	3,3	3,2	2,7	2,6	2,5	2,5	3,8	3,7	3,7	3,6	4,5	4,7	4,5	4,5	4,
Wellenrichtung	ºN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	172,5	172,5	172,5	241,5	240,3	240,3	240,3	313,5	312,6	312,6	312,6	335,0	339,3	339,6	339,6	339
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	1,5	1,5	1,5	2,8	2,8	2,8	2,8	1,7	1,7	1,7	1,7	1,9	2,1	2,1	2,1	2,
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	4,5	4,5	4,5	1,9	2,1	2,1	2,1	4,7	4,6	4,6	4,6	11,0	13,8	13,7	13,7	13
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12
Wellenrichtung	₽N	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	35
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1
s		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15
Strömungrichtung	ōN	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	14
//AX Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1
833 Max. Leinenlasten	kN	609	415	350	368	375	394	461	655	558	554	522	679	582	539	529	650	564	548	502	606	833	691	669	6
FSRU	% WLL	91	62	52	55	56	59	69	98	83	83	78	102	87	81	79	97	84	82	75	91	125	103	100	9
337 Max. Fenderlasten	kN	3337	3148	2816	2888	2796	2642	2409	2349	2139	2151	2270	2149	2229	2315	2337	2385	2434	2454	2510	2632	2756	2809	2803	27
FSRU	% WLL	79	74	67	68	66	62	57	56	51	51	54	51	53	55	55	56	58	58	59	62	65	66	66	6
0,35 Max. Fenderauslenkungen	m	0,35	0,31	0,26	0,27	0,26	0,24	0,21	0,20	0,18	0,18	0,20	0,18	0,19	0,20	0,20	0,21	0,21	0,22	0,22	0,24	0,25	0,26	0,26	0,
FSRU	% WLL	19	17	14	15	14	13	12	11	10	10	11	10	11	11	11	12	12	12	12	13	14	14	14	1
598 Max. Dalbenlasten	kN	1655	1286	1376	1387	1429	1362	1606	2213	1914	1903	1795	2598	2267	2109	2070	2518	2175	2120	1963	1846	2233	1861	1819	17
FSRU	% WLL	28	22	23	24	24	23	27	38	33	32	31	44	39	36	35	43	37	36	33	31	38	32	31	2
1,04 Max. Surfen Hochdruckverteilers	m	0,77	0,52	0,36	0,47	0,60	0,37	0,43	0,66	0,54	0,54	0,53	0,72	0,67	0,60	0,59	0,71	0,61	0,60	0,55	0,80	1,04	0,89	0,86	0,
),94 Max. Driften Hochdruckverteilers	m	0,43	0,43	0,46	0,49	0,50	0,52	0,55	0,75	0,64	0,63	0,62	0,94	0,77	0,68	0,66	0,83	0,68	0,67	0,62	0,53	0,46	0,47	0,47	0,
),23 Max. Tauchen Hochdruckverteilers	m	0,17	0,18	0,18	0,19	0,19	0,19	0,20	0,21	0,23	0,23	0,23	0,23	0,21	0,21	0,21	0,23	0,21	0,21	0,21	0,19	0,18	0,18	0,18	0,
Verschiedene Kriterien	%	26	17	15	16	20	17	18	25	21	21	21	31	26	23	22	28	23	22	21	27	35	30	29	2
855 Max. Leinenlasten	kN	494	446	403	452	510	421	502	706	673	669	627	855	744	669	650	804	675	669	652	589	525	449	444	4
LNGC	% WLL	74	67	60	68	76	63	75	105	101	100	94	128	111	100	97	120	101	100	97	88	78	67	66	6
294 Max. Fenderlasten	kN	1294	1189	557	406	328	319	375	347	308	308	313	323	264	269	271	288	274	282	306	341	491	480	474	4
Schwimmende	% WLL	39	36	17	12	10	10	11	10	9	9	9	10	8	8	8	9	8	9	9	10	15	14	14	1
1,28 Max. Fenderauslenkungen	m	1,28	1,21	0,68	0,54	0,46	0,44	0,51	0,48	0,42	0,42	0,43	0,44	0,37	0,37	0,38	0,40	0,38	0,39	0,42	0,47	0,62	0,61	0,60	0,
Schwimmende	% WLL	65	61	34	27	23	22	26	24	21	21	22	22	19	19	19	20	19	20	21	24	31	31	31	11
1,15 Max. Surfen relative STS	m	0,71	0,60	0,61	0,74	0,77	0,69	0,70	1,12	0,95	0,94	0,84	1,15	0,98	0,94	0,93	1,04	0,94	0,93	0,90	0,73	0,73	0,67	0,67	0,
0,85 Max. Driften relative STS	m	0,67	0,65	0,53	0,53	0,47	0,51	0,67	0,79	0,77	0,76	0,71	0,85	0,79	0,73	0,71	0,82	0,72	0,70	0,65	0,62	0,51	0,52	0,52	0,
2,15 Max. Tauchen relative STS	m	1,36	1,26	1,50	1,71	1,65	1,79	1,84	1,99	2,06	2,06	2,04	2,15	1,99	1,98	1,97	2,08	1,97	1,96	1,94	1,72	1,62	1,74	1,75	1,
Verschiedene Kriterien	%	24	22	20	25	26	23	23	37	32	31	28	38	33	31	31	35	31	31	30	24	24	22	22	2

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 145 von 169

Run ID		run121	run126	run131	run136	run141	run146	run151	run156	9	run157	run161	run162	10	run163	run166	run167	11	run168	run171	l run1
																					1
Wasserstand	m CD																				İ
TR		5	5	5	5	5	5	5	5	3	2	5	2	1	1	5	2	2	1	5	5
Windrichtung	ºN	0	30	60	90	120	150	180	210	210	210	240	240	240	240	270	270	270	270	300	33
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	18	18	20	18	18	17	20	18	18	17	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,85	0,83	0,79	0,71	0,65	0,60	1,01	0,91	0,91	0,86	1,41	1,6
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	3,3	3,3	2,7	2,6	2,5	2,5	3,8	3,7	3,7	3,6	4,5	4,
Wellenrichtung	ºN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	172,4	172,5	241,5	240,3	240,3	240,3	313,5	312,6	312,6	312,6	335,0	339
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	1,5	1,5	2,8	2,8	2,8	2,8	1,7	1,7	1,7	1,7	1,9	2,
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	4,5	4,5	1,9	2,1	2,1	2,1	4,7	4,6	4,6	4,6	11,0	13
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	1
Wellenrichtung	οN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	35
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1
s		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	1
Strömungrichtung	οN	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	3.
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	
Max. Leinenlasten	kN	352	334	369	483	540	455	450	548	468	447	639	515	491	469	579	498	495	464	434	Ü
FSRU	% WLL	53	50	55	72	81	68	67	82	70	67	96	77	73	70	87	74	74	69	65	
Max. Fenderlasten	kN	3502	3383	2896	2813	2750	2695	2470	2668	2428	2363	2153	2140	2160	2178	2167	2160	2161	2166	2332	29
FSRU	% WLL	83	80	68	66	65	64	58	63	57	56	51	51	51	51	51	51	51	51	55	
Max. Fenderauslenkungen	m	0,38	0,36	0,27	0,26	0,25	0,24	0,22	0,24	0,21	0,21	0,18	0,18	0,18	0,19	0,18	0,18	0,18	0,19	0,20	C
FSRU	% WLL	21	20	15	14	14	14	12	13	12	11	10	10	10	10	10	10	10	10	11	
Max. Dalbenlasten	kN	1359	1327	1198	1367	1323	1439	1661	2048	1811	1747	2374	1990	1882	1788	2237	1927	1904	1707	1690	1
FSRU	% WLL	23	23	20	23	22	24	28	35	31	30	40	34	32	30	38	33	32	29	29	
Max. Surfen Hochdruckverteilers	m	0,39	0,56	0,77	1,09	1,23	1,02	1,03	0,84	0,81	0,80	0,72	0,68	0,67	0,67	0,68	0,58	0,57	0,56	0,49	C
Max. Driften Hochdruckverteilers	m	0,46	0,46	0,48	0,53	0,52	0,55	0,60	0,75	0,70	0,69	0,97	0,79	0,73	0,69	0,86	0,68	0,68	0,65	0,56	0
Max. Tauchen Hochdruckverteilers	m	0,17	0,19	0,18	0,19	0,19	0,19	0,20	0,21	0,22	0,23	0,22	0,21	0,21	0,21	0,22	0,20	0,20	0,20	0,19	0
Verschiedene Kriterien	%	15	19	26	36	41	34	34	28	27	27	32	26	24	23	29	23	23	22	19	
Max. Leinenlasten	kN	464	465	423	599	599	445	527	744	669	649	826	713	669	630	780	677	669	594	541	3
LNGC	% WLL	69	70	63	90	90	67	79	111	100	97	123	107	100	94	117	101	100	89	81	
Max. Fenderlasten	kN	1524	1452	690	435	360	362	318	337	300	291	315	228	229	230	228	249	250	257	300	4
Schwimmende	% WLL	46	44	21	13	11	11	10	10	9	9	10	7	7	7	7	8	8	8	9	
Max. Fenderauslenkungen	m	1,45	1,39	0,81	0,56	0,48	0,49	0,44	0,46	0,42	0,40	0,43	0,32	0,32	0,32	0,32	0,35	0,35	0,36	0,41	0
Schwimmende	% WLL	73	70	41	28	24	25	22	23	21	20	22	16	16	16	16	17	18	18	21	
Max. Surfen relative STS	m	0,65	0,65	0,67	0,72	0,71	0,51	0,75	1,08	0,92	0,88	1,02	0,92	0,85	0,79	0,94	0,82	0,81	0,77	0,78	(
Max. Driften relative STS	m	0,79	0,83	0,64	0,54	0,55	0,53	0,60	0,76	0,75	0,75	0,85	0,76	0,74	0,72	0,82	0,73	0,72	0,68	0,56	C
Max. Tauchen relative STS	m	1,27	1,16	1,36	1,50	1,53	1,62	1,73	1,94	1,95	1,95	2,09	1,90	1,88	1,86	2,02	1,87	1,88	1,93	1,70	1
Verschiedene Kriterien	%	26	28	22	24	24	18	25	36	31	29	34	31	28	26	31	27	27	26	26	

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 146 von 169

FSRU in Ballast und LNG-Tanker mit Kugeltank (Moss) 177 Tsd. beladen bei fünfjährlichem Hochwasserstand

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 147 von 169

Run ID		run1	run6	run11	run16	run21	run26	run31	run36	run37	run38	run39	1	run40	run41	run42	run43	2	run44	run46	run47	3	run48	run51	run56
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	2	1	0,5	0	0,2	5	2	1	1	0,5	5	2	1	1	5	5
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	210	210	210	210	210	240	240	240	240	240	270	270	270	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	18	16	15	15	14	20	18	17	16	16	20	18	17	17	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,83	0,78	0,72	0,72	0,64	0,79	0,71	0,60	0,56	0,55	1,01	0,91	0,86	0,86	1,41	1,61
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	3,3	3,2	3,2	3,2	3,0	2,7	2,6	2,5	2,4	2,4	3,8	3,7	3,7	3,6	4,5	4,7
Wellenrichtung	οN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	172,5	172,5	172,5	172,5	172,5	241,5	240,3	240,3	240,3	240,3	313,5	312,6	312,6	312,6	335,0	339,
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	1,5	1,5	1,5	1,5	1,5	2,8	2,8	2,8	2,8	2,8	1,7	1,7	1,7	1,7	1,9	2,1
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	4,5	4,5	4,5	4,5	4,5	1,9	2,1	2,1	2,1	2,1	4,7	4,6	4,6	4,6	11,0	13,8
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	ōN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	οN																								
Strömunggeschwindigkeit	m/s																								
Max. Leinenlasten	kN	418	304	257	266	282	274	391	638	514	488	424	424	336	720	585	506	475	466	643	567	500	488	535	569
FSRU	% WLL	63	45	38	40	42	41	58	95	77	73	63	63	50	108	87	76	71	70	96	85	75	73	80	85
Max. Fenderlasten	kN	3084	2876	2221	2369	2412	2340	2054	2380	2142	2093	2203	2203	1844	2473	2206	1985	1955	1946	2364	1991	1930	1920	2101	2441
FSRU	% WLL	73	68	53	56	57	55	49	56	51	49	52	52	44	58	52	47	46	46	56	47	46	45	50	58
Max. Fenderauslenkungen	m	0,30	0,27	0,19	0,21	0,21	0,20	0,17	0,21	0,18	0,18	0,19	0,19	0,15	0,22	0,19	0,17	0,16	0,16	0,21	0,17	0,16	0,16	0,18	0,22
FSRU	% WLL	17	15	11	12	12	11	10	12	10	10	11	10	8	12	10	9	9	9	11	9	9	9	10	12
Max. Dalbenlasten	kN	1248	1195	969	940	971	1053	1529	2191	1825	1697	1482	1481	1315	2796	2287	1979	1788	1727	2540	2246	1975	1930	1614	1559
FSRU	% WLL	21	20	16	16	16	18	26	37	31	29	25	25	22	48	39	34	30	29	43	38	34	33	27	26
Max. Surfen Hochdruckverteilers	m	0,55	0,30	0,33	0,66	0,75	0,67	0,97	1,01	0,88	0,80	0,77	0,77	0,61	0,97	0,96	0,80	0,75	0,74	0,90	0,85	0,73	0,71	0,74	0,81
Max. Driften Hochdruckverteilers	m	0,35	0,32	0,34	0,35	0,34	0,33	0,39	0,93	0,78	0,69	0,59	0,59	0,48	1,12	0,95	0,79	0,72	0,70	0,96	0,85	0,73	0,71	0,42	0,31
Max. Tauchen Hochdruckverteilers	m	0,13	0,13	0,13	0,12	0,12	0,11	0,12	0,13	0,13	0,12	0,12	0,12	0,12	0,14	0,13	0,13	0,12	0,12	0,12	0,12	0,12	0,11	0,12	0,13
Verschiedene Kriterien	%	18	11	11	22	25	22	32	34	29	27	26	26	20	37	32	27	25	25	32	28	24	24	25	27
Max. Leinenlasten	kN	399	362	249	316	314	303	528	940	808	695	669	669	465	1173	953	781	669	633	1020	787	669	649	500	349
LNGC	% WLL	60	54	37	47	47	45	79	141	121	104	100	100	70	175	143	117	100	95	152	118	100	97	75	52
Max. Fenderlasten	kN	1496	1429	650	303	202	229	378	492	451	430	416	416	348	598	457	413	382	372	443	377	344	339	298	501
Schwimmende	% WLL	45	43	20	9	6	7	11	15	14	13	13	13	10	18	14	12	12	11	13	11	10	10	9	15
Max. Fenderauslenkungen	m	1,43	1,38	0,77	0,42	0,28	0,32	0,51	0,62	0,58	0,57	0,55	0,55	0,48	0,72	0,59	0,55	0,52	0,51	0,58	0,51	0,48	0,47	0,41	0,63
Schwimmende	% WLL	72	70	39	21	14	16	26	31	29	29	28	28	24	36	30	28	26	26	29	26	24	24	21	32
Max. Surfen relative STS	m	0,53	0,40	0,34	0,54	0,45	0,42	0,96	1,92	1,67	1,39	1,45	1,45	0,86	1,71	1,71	1,49	1,33	1,28	1,55	1,41	1,19	1,15	0,71	0,57
Max. Driften relative STS	m	0,80	0,73	0,49	0,39	0,33	0,41	0,53	0,95	0,84	0,74	0,71	0,71	0,57	1,16	0,94	0,81	0,76	0,74	1,07	0,92	0,76	0,73	0,56	0,42
Max. Tauchen relative STS	m	0,97	0,97	0,92	0,96	0,86	0,81	0,88	1,24	1,21	1,14	1,08	1,08	0,92	1,42	1,29	1,18	1,17	1,16	1,33	1,22	1,10	1,08	0,87	0,88
Verschiedene Kriterien	%	27	24	16	18	15	14	32	64	56	46	48	48	29	57	57	50	44	43	52	47	40	38	24	19

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 148 von 169

Run ID		run61	run66	run71	run76	run81	run86	run91	run96	run97	run98	4	run99	run101	run102	run103	run104	5	run105	run106	run107	6	run108	run111	7	run112	run116	8	run1
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,1
TR		5	5	5	5	5	5	5	5	2	1	1	0,5	5	2	1	0,5	0	0,2	5	2	1	1	5	5	2	5	3	2
Windrichtung	∘N	0	30	60	90	120	150	180	210	210	210	210	210	240	240	240	240	240	240	270	270	270	270	300	300	300	330	330	33
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	18	16	16	15	20	18	17	16	15	14	20	18	17	17	20	20	18	21	20	19
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,83	0,78	0,78	0,72	0,79	0,71	0,60	0,55	0,53	0,47	1,01	0,91	0,86	0,86	1,41	1,39	1,26	1,61	1,51	1,4
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	3,3	3,2	3,2	3,2	2,7	2,6	2,5	2,4	2,4	2,3	3,8	3,7	3,7	3,6	4,5	4,5	4,3	4,7	4,6	4,
Wellenrichtung	∘N	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	172,5	172,5	172,5	172,5	241,5	240,3	240,3	240,3	240,3	240,3	313,5	312,6	312,6	312,6	335,0	335,0	334,6	339,3	339,5	339
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	1,5	1,5	1,5	1,5	2,8	2,8	2,8	2,8	2,8	2,8	1,7	1,7	1,7	1,7	1,9	1,9	1,9	2,1	2,1	2,
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	4,5	4,5	4,5	4,5	1,9	2,1	2,1	2,1	2,1	2,1	4,7	4,6	4,6	4,6	11,0	10,9	10,6	13,8	13,8	13,
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,3
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12
Wellenrichtung	∘N	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,
Strömungrichtung	∘N	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,
Max. Leinenlasten	kN	529	373	269	254	261	259	431	689	578	544	546	560	732	625	571	560	542	468	716	610	600	599	684	669	558	732	669	61
FSRU	% WLL	79	56	40	38	39	39	64	103	86	81	82	84	109	93	85	84	81	70	107	91	90	89	102	100	83	109	100	92
Max. Fenderlasten	kN	3016	2838	2179	2241	2316	2248	2032	2226	2064	2140	2137	2115	2471	2291	2133	2064	2034	1917	2297	2107	1971	1953	2087	2087	2083	2315	2239	217
FSRU	% WLL	71	67	52	53	55	53	48	53	49	51	51	50	58	54	50	49	48	45	54	50	47	46	49	49	49	55	53	51
Max. Fenderauslenkungen	m	0,29	0,26	0,19	0,19	0,20	0,19	0,17	0,19	0,17	0,18	0,18	0,18	0,22	0,20	0,18	0,17	0,17	0,16	0,20	0,18	0,16	0,16	0,18	0,18	0,18	0,20	0,19	0,1
FSRU	% WLL	16	15	10	11	11	11	10	11	10	10	10	10	12	11	10	10	10	9	11	10	9	9	10	10	10	11	11	10
Max. Dalbenlasten	kN	1454	1178	1060	933	947	1004	1520	2349	1962	1746	1731	1630	2778	2378	2085	1831	1796	1655	2633	2248	2105	2086	1845	1806	1529	1969	1811	168
FSRU	% WLL	25	20	18	16	16	17	26	40	33	30	29	28	47	40	35	31	31	28	45	38	36	35	31	31	26	33	31	29
Max. Surfen Hochdruckverteilers	m	0,73	0,51	0,31	0,35	0,42	0,33	0,74	0,83	0,81	0,76	0,76	0,76	0,83	0,83	0,82	0,77	0,75	0,64	0,97	0,86	0,83	0,83	0,93	0,92	0,80	1,00	0,93	0,8
Max. Driften Hochdruckverteilers	m	0,34	0,30	0,34	0,35	0,33	0,32	0,40	0,94	0,79	0,70	0,69	0,62	1,07	0,93	0,85	0,72	0,69	0,56	0,96	0,81	0,74	0,74	0,41	0,40	0,37	0,30	0,31	0,3
Max. Tauchen Hochdruckverteilers	m	0,13	0,13	0,13	0,12	0,12	0,11	0,12	0,13	0,12	0,12	0,12	0,12	0,13	0,13	0,13	0,13	0,13	0,12	0,12	0,11	0,11	0,11	0,12	0,12	0,12	0,13	0,12	0,3
Verschiedene Kriterien	%	24	17	11	12	14	11	25	31	27	25	25	25	36	31	28	26	25	21	32	29	28	28	31	31	27	33	31	29
Max. Leinenlasten	kN	418	354	211	218	242	294	490	931	795	682	669	582	1139	973	847	708	669	515	956	776	669	655	481	471	395	390	371	35
LNGC	% WLL	63	53	32	33	36	44	73	139	119	102	100	87	170	146	127	106	100	77	143	116	100	98	72	70	59	58	55	53
Max. Fenderlasten	kN	1225	1150	449	267	181	167	305	407	365	303	304	307	485	371	312	296	289	263	371	302	261	256	242	240	224	410	358	31
Schwimmende	% WLL	37	35	14	8	5	5	9	12	11	9	9	9	15	11	9	9	9	8	11	9	8	8	7	7	7	12	11	9
Max. Fenderauslenkungen	m	1,24	1,18	0,58	0,37	0,25	0,23	0,42	0,54	0,49	0,42	0,42	0,42	0,62	0,51	0,43	0,41	0,40	0,37	0,50	0,42	0,36	0,36	0,34	0,33	0,31	0,54	0,49	0,4
Schwimmende	% WLL	62	60	29	19	13	12	21	27	25	21	21	21	31	26	22	21	20	18	25	21	18	18	17	17	16	27	25	2
Max. Surfen relative STS	m	0,49	0,39	0,32	0,42	0,43	0,38	1,15	1,76	1,42	1,33	1,33	1,36	1,44	1,45	1,40	1,32	1,25	0,99	1,33	1,34	1,23	1,21	0,73	0,72	0,58	0,57	0,53	0,
Max. Driften relative STS	m	0,63	0,61	0,40	0,36	0,30	0,34	0,49	0,86	0,76	0,67	0,67	0,60	0,97	0,88	0,86	0,77	0,72	0,54	0,95	0,78	0,69	0,68	0,49	0,49	0,45	0,39	0,40	0,
Max. Tauchen relative STS	m	0,90	0,94	0,88	0,89	0,81	0,78	0,82	1,08	1,07	1,05	1,05	1,05	1,23	1,16	1,11	1,06	1,05	1,02	1,14	1,10	1,01	1,00	0,86	0,86	0,84	0,85	0,85	0,8
Verschiedene Kriterien	%	21	20	13	14	14	13	38	59	47	44	44	45	48	48	47	44	42	33	44	45	41	40	24	24	19	19	18	16

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 149 von 169

Run ID		run121	run126	run131	run136	run141	run146	run151	run156	run157	9	run158	run161	run162	run163	10	run164	run166	run167	11	run168	run171	run17
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,1
TR		5	5	5	5	5	5	5	5	2	1	1	5	2	1	1	0,5	5	2	1	1	5	5
Windrichtung	∘N	0	30	60	90	120	150	180	210	210	210	210	240	240	240	240	240	270	270	270	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	18	17	16	20	18	17	16	16	20	18	17	17	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,83	0,80	0,78	0,79	0,71	0,60	0,55	0,55	1,01	0,91	0,88	0,86	1,41	1,6
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	3,3	3,3	3,2	2,7	2,6	2,5	2,4	2,4	3,8	3,7	3,7	3,6	4,5	4,
Wellenrichtung	ōΝ	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	172,5	172,5	172,5	241,5	240,3	240,3	240,3	240,3	313,5	312,6	312,6	312,6	335,0	339
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	1,5	1,5	1,5	2,8	2,8	2,8	2,8	2,8	1,7	1,7	1,7	1,7	1,9	2,3
S		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	4,5	4,5	4,5	1,9	2,1	2,1	2,1	2,1	4,7	4,6	4,6	4,6	11,0	13,
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,3
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,
Wellenrichtung	∘N	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,
Strömungrichtung	∘N	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	293	293	276	433	467	434	486	517	457	431	422	702	609	518	459	456	612	555	510	470	375	40
FSRU	% WLL	44	44	41	65	70	65	73	77	68	64	63	105	91	77	69	68	92	83	76	70	56	61
Max. Fenderlasten	kN	3141	2896	2223	2507	2473	2302	2050	2117	2012	1912	1876	2200	2078	2007	1951	1948	2156	1906	1872	1841	2146	242
FSRU	% WLL	74	68	53	59	58	54	48	50	48	45	44	52	49	47	46	46	51	45	44	44	51	57
Max. Fenderauslenkungen	m	0,31	0,27	0,19	0,22	0,22	0,20	0,17	0,18	0,17	0,16	0,15	0,19	0,18	0,17	0,16	0,16	0,18	0,16	0,15	0,15	0,18	0,2
FSRU	% WLL	17	15	11	12	12	11	10	10	9	9	9	10	10	9	9	9	10	9	9	8	10	12
Max. Dalbenlasten	kN	1173	1192	990	1106	1126	1176	1585	2006	1752	1653	1617	2520	2143	1868	1619	1606	2298	1988	1842	1713	1483	111
FSRU	% WLL	20	20	17	19	19	20	27	34	30	28	27	43	36	32	28	27	39	34	31	29	25	19
Max. Surfen Hochdruckverteilers	m	0,31	0,48	0,72	1,04	1,13	1,05	1,20	1,06	0,99	0,96	0,95	0,97	0,94	0,87	0,87	0,87	1,00	0,86	0,81	0,77	0,45	0,5
Max. Driften Hochdruckverteilers	m	0,35	0,34	0,34	0,35	0,34	0,35	0,39	0,86	0,75	0,68	0,66	1,06	0,94	0,82	0,71	0,70	0,92	0,80	0,73	0,67	0,44	0,3
Max. Tauchen Hochdruckverteilers	m	0,13	0,12	0,14	0,12	0,12	0,12	0,12	0,13	0,12	0,12	0,12	0,13	0,13	0,13	0,13	0,13	0,12	0,11	0,11	0,12	0,12	0,1
Verschiedene Kriterien	%	12	16	24	35	38	35	40	35	33	32	32	35	31	29	29	29	33	29	27	26	15	19
Max. Leinenlasten	kN	494	426	325	377	390	337	508	847	742	669	642	1073	849	793	669	662	927	739	669	608	493	29
LNGC	% WLL	74	64	49	56	58	50	76	127	111	100	96	160	127	119	100	99	139	110	100	91	74	44
Max. Fenderlasten	kN	1669	1679	797	356	190	186	307	461	340	328	324	437	358	325	321	320	363	281	274	267	264	53
Schwimmende	% WLL	50	51	24	11	6	6	9	14	10	10	10	13	11	10	10	10	11	8	8	8	8	16
Max. Fenderauslenkungen	m	1,54	1,54	0,91	0,49	0,26	0,26	0,43	0,59	0,47	0,45	0,45	0,57	0,50	0,45	0,44	0,44	0,49	0,39	0,38	0,37	0,37	0,6
Schwimmende	% WLL	78	78	46	25	13	13	22	30	24	23	23	29	25	23	22	22	25	20	19	19	19	33
Max. Surfen relative STS	m	0,56	0,42	0,39	0,46	0,37	0,39	0,70	1,19	1,02	1,00	0,99	1,33	1,08	0,99	0,95	0,94	1,28	1,08	0,92	0,78	0,60	0,5
Max. Driften relative STS	m	0,91	0,84	0,53	0,45	0,35	0,36	0,51	0,79	0,74	0,68	0,66	1,04	0,89	0,82	0,71	0,70	0,93	0,78	0,72	0,67	0,54	0,4
Max. Tauchen relative STS	m	0,92	0,85	0,88	0,93	0,83	0,82	0,88	1,12	1,00	0,99	0,98	1,18	1,19	1,12	1,07	1,06	1,14	1,10	1,05	1,01	0,85	0,8
Verschiedene Kriterien	%	30	28	18	15	12	13	23	40	34	33	33	44	36	33	32	31	43	36	31	26	20	19

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 150 von 169

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 151 von 169

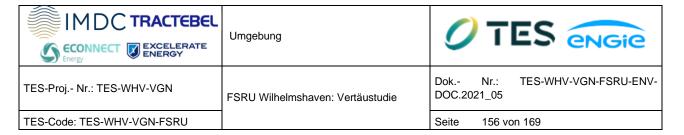
FSRU beladen und LNG-Tanker mit Kugeltank (Moss) 177 Tsd. in Ballast bei fünfjährlichem Hochwasserstand

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 152 von 169

Run ID		run1	run6	run11	run16	run21	run26	run31	run36	1	run37	run41	run42	2	run43	run46	run47	3	run48	run51	4
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	_
wasserstand	III CD	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	0,17	1
TR		5	5	5	5	5	5	5	5	4	2	5	2	1	1	5	2	2	1	5	-
Windrichtung	ºN	0	30	60	90	120	150	180	210	210	210	240	240	240	240	270	270	270	270	300	1
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	19	18	20	18	18	17	20	18	18	17	20	٦
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,89	0,83	0,79	0,71	0,64	0,60	1,01	0,91	0,90	0,86	1,41	1
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	3,4	3,3	2,7	2,6	2,5	2,5	3,8	3,7	3,7	3,6	4,5	1
Wellenrichtung	ºN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	172,1	172,5	241,5	240,3	240,3	240,3	313,5	312,6	312,6	312,6	335,0	1
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	1,5	1,5	2,8	2,8	2,8	2,8	1,7	1,7	1,7	1,7	1,9	
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	4,5	4,5	1,9	2,1	2,1	2,1	4,7	4,6	4,6	4,6	11,0	Ī
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	Ī
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	Ī
Wellenrichtung	ōΝ	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	
S		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	
Strömungrichtung	∘N																				
Strömunggeschwindigkeit	m/s																				
Max. Leinenlasten	kN	443	261	218	273	329	248	416	608	571	499	711	581	509	466	632	523	509	458	444	
FSRU	% WLL	66	39	33	41	49	37	62	91	85	75	106	87	76	70	94	78	76	69	66	
Max. Fenderlasten	kN	3174	3042	2370	2444	2405	2237	2224	2144	2103	2023	2084	1988	2025	2047	2196	2219	2198	2126	2353	
FSRU	% WLL	75	72	56	58	57	53	53	51	50	48	49	47	48	48	52	52	52	50	56	
Max. Fenderauslenkungen	m	0,32	0,29	0,21	0,22	0,21	0,19	0,19	0,18	0,18	0,17	0,18	0,17	0,17	0,17	0,19	0,19	0,19	0,18	0,21	
FSRU	% WLL	18	16	12	12	12	11	11	10	10	9	10	9	9	10	10	11	10	10	11	
Max. Dalbenlasten	kN	1212	1259	936	1033	1074	1166	1588	2092	1976	1748	2782	2192	1970	1835	2484	2062	2007	1815	1483	
FSRU	% WLL	21	21	16	18	18	20	27	36	34	30	47	37	33	31	42	35	34	31	25	
Max. Surfen Hochdruckverteilers	m	0,57	0,28	0,33	0,73	0,85	0,56	0,71	0,75	0,73	0,67	0,68	0,61	0,52	0,47	0,54	0,44	0,42	0,36	0,61	
Max. Driften Hochdruckverteilers	m	0,30	0,28	0,24	0,24	0,29	0,23	0,34	0,74	0,69	0,60	0,99	0,80	0,71	0,66	0,86	0,66	0,64	0,56	0,35	4
Max. Tauchen Hochdruckverteilers	m	0,14	0,13	0,14	0,15	0,16	0,15	0,15	0,17	0,16	0,15	0,17	0,16	0,16	0,16	0,15	0,16	0,16	0,15	0,16	4
Verschiedene Kriterien	%	19	9	11	24	28	19	24	25	24	22	33	27	24	22	29	22	21	19	20	4
Max. Leinenlasten	kN	472	452	330	451	433	402	540	724	669	560	876	725	669	634	767	690	669	596	517	4
LNGC	% WLL	71	68	49	67	65	60	81	108	100	84	131	108	100	95	115	103	100	89	77	4
Max. Fenderlasten	kN	1466	1529	673	335	251	239	310	458	439	402	433	347	333	324	299	251	248	237	259	4
Schwimmende	% WLL	44	46	20	10	8	7	9	14	13	12	13	10	10	10	9	8	7	7	8	4
Max. Fenderauslenkungen	m	1,40	1,45	0,79	0,46	0,35	0,33	0,43	0,59	0,57	0,54	0,57	0,48	0,46	0,45	0,42	0,35	0,34	0,33	0,36	4
Schwimmende	% WLL	71	73	40	23	18	17	22	30	29	27	29	24	23	23	21	18	17	17	18	4
Max. Surfen relative STS	m	0,57	0,51	0,49	0,69	0,61	0,53	0,82	1,33	1,25	1,09	1,51	1,28	1,19	1,14	1,11	1,08	1,05	0,95	0,80	4
Max. Driften relative STS	m	0,71	0,78	0,51	0,48	0,40	0,39	0,49	0,89	0,83	0,72	1,02	0,90	0,84	0,80	0,89	0,81	0,79	0,71	0,56	4
Max. Tauchen relative STS	m	1,00	0,98	1,03	1,15	1,03	0,98	0,93	1,13	1,06	0,93	1,20	1,10	1,05	1,01	1,06	0,91	0,91	0,91	0,87	4
Verschiedene Kriterien	%	24	26	17	23	20	18	27	44	42	36	50	43	40	38	37	36	35	32	27	1

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 153 von 169

Run ID		run61	run66	run71	run76	run81	run86	run91	run96	run101	run102	4	run103	run106	5	run107	run111	run116	run117	6	run118
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR	_	5	5	5	5	5	5	5	5	5	2	2	1	5	4	2	5	5	2	2	1
Windrichtung	ºN	0	30	60	90	120	150	180	210	240	240	240	240	270	270	270	300	330	330	330	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	20	18	18	17	20	19	18	20	21	19	18	17
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,79	0,71	0,69	0,60	1,01	0,97	0,91	1,41	1,61	1,43	1,42	1,35
Wellenperiode Tp	S	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	2,7	2,6	2,6	2,5	3,8	3,8	3,7	4,5	4,7	4,5	4,5	4,4
Wellenrichtung	ºN	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	241,5	240,3	240,3	240,3	313,5	313,1	312,6	335,0	339,3	339,6	339,6	339,6
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	2,8	2,8	2,8	2,8	1,7	1,7	1,7	1,9	2,1	2,1	2,1	2,1
S	_	9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	1,9	2,1	2,1	2,1	4,7	4,7	4,6	11,0	13,8	13,7	13,7	13,7
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31
Wellenperiode Tp	S	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1
Wellenrichtung	ōN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
S	_	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	∘N	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8	140,8
X Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
6 Max. Leinenlasten	kN	572	402	233	217	251	235	431	633	729	591	575	503	646	602	543	585	826	685	669	589
FSRU 37 Max. Fenderlasten	% WLL	86	60	35	32	38	35	64	95	109	88	86	75	97	90	81	88	124	102	100	88
	kN	3037	2917	2104	2235	2361	2142	2063	1946	1850	1829	1854	1964	2015	1998	1975	2188	2392	2144	2131	2062
FSRU	% WLL	. 72	69	50	53	56	51	49	46	44	43	44	46	48	47	47	52	57	51	50	49
29 Max. Fenderauslenkungen	m	0,29	0,27	0,18	0,19	0,21	0,18	0,17	0,16	0,15	0,15	0,15	0,16	0,17	0,17	0,16	0,19	0,21	0,18	0,18	0,17
FSRU	% WLL	16	15	10	11	11	10	10	9	8	8	8	9	9	9	9	10	12	10	10	10
76 Max. Dalbenlasten	kN	1565	1096	917	838	946	918	1476	2147	2776	2267	2206	1936	2463	2309	2102	1597	2211	1849	1809	1609
FSRU	% WLL	27	19	16	14	16	16	25	36	47	39	37	33	42	39	36	27	38	31	31	27
10 Max. Surfen Hochdruckverteilers	m	0,78	0,51	0,32	0,34	0,46	0,25	0,48	0,71	0,80	0,72	0,71	0,64	0,75	0,71	0,66	0,81	1,10	0,93	0,92	0,83
Max. Driften Hochdruckverteilers	m	0,29	0,28	0,23	0,21	0,28	0,21	0,31	0,73	0,98	0,79	0,76	0,64	0,80	0,73	0,64	0,31	0,26	0,24	0,23	0,23
17 Max. Tauchen Hochdruckverteiler		0,14	0,13	0,14	0,15	0,16	0,15	0,15	0,16	0,17	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,16	0,15	0,15	0,15
Verschiedene Kriterien	%	26	17	11	11	15	8	16	24	33	26	25	21	27	24	22	27	37	31	31	28
Max. Leinenlasten	kN	473	412	277	341	373	323	494	650	833	690	669	573	713	669	609	460	413	350	345	317
LNGC	% WLL	71	62	41	51	56	48	74	97	125	103	100	86	107	100	91	69	62	52	52	47
95 Max. Fenderlasten	kN	1268	1295	501	308	236	206	298	395	300	293	291	285	247	238	225	250	395	364	359	336
Schwimmende	% WLL	38	39	15	9	7	6	9	12	9	9	9	9	7	7	7	8	12	11	11	10
Max. Fenderauslenkungen	m	1,27	1,29	0,63	0,43	0,33	0,29	0,41	0,53	0,42	0,41	0,40	0,40	0,34	0,33	0,31	0,35	0,53	0,50	0,49	0,47
Schwimmende	% WLL	64	65	32	22	17	14	21	27	21	21	20	20	17	17	16	18	27	25	25	23
19 Max. Surfen relative STS	m	0,57	0,46	0,39	0,62	0,60	0,45	0,79	1,19	1,19	1,02	0,99	0,86	0,95	0,93	0,90	0,61	0,61	0,50	0,49	0,46
93 Max. Driften relative STS	m	0,61	0,67	0,44	0,39	0,41	0,32	0,42	0,76	0,93	0,80	0,78	0,69	0,79	0,76	0,72	0,50	0,38	0,34	0,33	0,33
15 Max. Tauchen relative STS	m	0,98	0,95	0,97	1,08	1,01	0,95	0,94	1,06	1,15	1,09	1,07	1,00	1,04	0,99	0,92	0,87	0,97	0,96	0,96	0,97
Verschiedene Kriterien	%	20	22	15	21	20	15	26	40	40	34	33	29	32	31	30	20	20	17	16	15

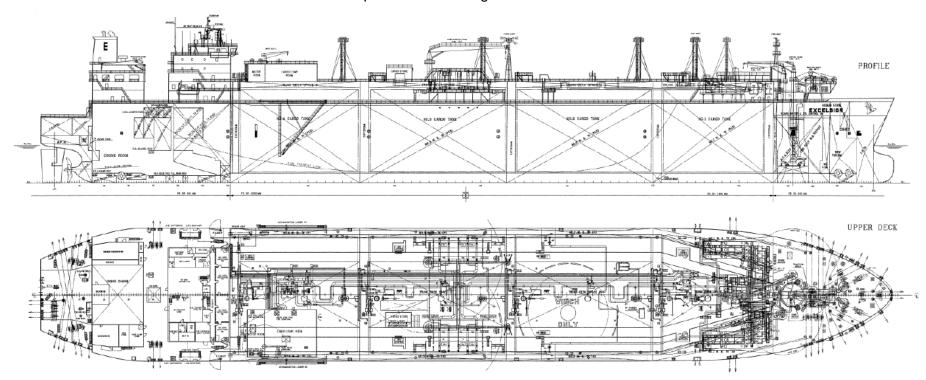

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_06
TES-Code: TES-WHV-VGN-FSRU		Seite 154 von 169

Run ID		run121	run126	run131	run136	run141	run146	run151	run156	7	run157	run161	run162	8	run163	run166	9	run171	run17
Wasserstand	m CD	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17	6,17
TR		5	5	5	5	5	5	5	5	4	2	5	2	2	1	5	3	5	5
Windrichtung	ōΝ	0	30	60	90	120	150	180	210	210	210	240	240	240	240	270	270	300	330
Windgeschwindigkeit	m/s	19	17	14	15	14	14	17	19	18	18	20	18	18	17	20	19	20	21
Wellenhöhe Hs	m	1,51	1,20	0,92	0,96	0,84	0,78	0,98	0,92	0,88	0,83	0,79	0,71	0,66	0,60	1,01	0,94	1,41	1,61
Wellenperiode Tp	s	4,5	3,9	3,4	3,4	3,3	3,4	3,7	3,4	3,4	3,3	2,7	2,6	2,6	2,5	3,8	3,8	4,5	4,7
Wellenrichtung	₽N	348,1	10,9	51,2	91,3	122,2	139,0	151,3	171,9	172,2	172,5	241,5	240,3	240,3	240,3	313,5	312,9	335,0	339,
gamma		2,4	2,8	3,3	3,2	3,5	2,2	1,7	1,5	1,5	1,5	2,8	2,8	2,8	2,8	1,7	1,7	1,9	2,1
s		9,3	5,3	5,5	5,8	7,4	10,1	8,3	4,5	4,5	4,5	1,9	2,1	2,1	2,1	4,7	4,6	11,0	13,
Wellenhöhe Hs	m	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,31	0,33
Wellenperiode Tp	s	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,1	12,
Wellenrichtung	οN	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,0	357,
gamma		1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5	1,5
s		15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4	15,4
Strömungrichtung	οN	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,7	322,
Strömunggeschwindigkeit	m/s	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9	1,9
Max. Leinenlasten	kN	275	243	293	464	517	422	465	545	500	449	635	520	489	450	558	495	337	473
FSRU	% WLL	41	36	44	69	77	63	70	82	75	67	95	78	73	67	83	74	50	71
Max. Fenderlasten	kN	3144	3030	2201	2345	2305	2135	2045	1896	1853	1803	1957	1736	1751	1770	1920	1922	2048	252
FSRU	% WLL	74	72	52	55	54	50	48	45	44	43	46	41	41	42	45	45	48	60
Max. Fenderauslenkungen	m	0,31	0,29	0,19	0,20	0,20	0,18	0,17	0,16	0,15	0,15	0,16	0,14	0,14	0,14	0,16	0,16	0,17	0,2
FSRU	% WLL	17	16	11	11	11	10	10	9	8	8	9	8	8	8	9	9	10	12
Max. Dalbenlasten	kN	1303	1376	1027	1034	1117	1130	1621	2107	1946	1762	2439	1998	1861	1685	2155	1911	1290	129
FSRU	% WLL	22	23	17	18	19	19	28	36	33	30	41	34	32	29	37	32	22	22
Max. Surfen Hochdruckverteilers	m	0,28	0,47	0,76	1,12	1,25	1,01	1,15	0,91	0,89	0,86	0,81	0,77	0,73	0,69	0,66	0,67	0,45	0,6
Max. Driften Hochdruckverteilers	m	0,29	0,27	0,23	0,24	0,29	0,23	0,34	0,76	0,70	0,63	1,00	0,81	0,75	0,66	0,83	0,70	0,34	0,2
Max. Tauchen Hochdruckverteilers	m	0,14	0,13	0,14	0,14	0,16	0,15	0,15	0,16	0,16	0,16	0,17	0,16	0,16	0,16	0,15	0,15	0,15	0,1
Verschiedene Kriterien	%	10	16	25	37	42	34	38	30	30	29	33	27	25	23	28	23	15	23
Max. Leinenlasten	kN	465	495	372	538	522	406	548	737	669	590	882	719	669	605	741	669	454	297
LNGC	% WLL	70	74	56	81	78	61	82	110	100	88	132	107	100	90	111	100	68	44
Max. Fenderlasten	kN	1483	1534	635	315	231	201	283	375	359	339	308	295	280	261	228	214	219	48:
Schwimmende	% WLL	45	46	19	10	7	6	9	11	11	10	9	9	8	8	7	6	7	15
Max. Fenderauslenkungen	m	1,42	1,45	0,76	0,44	0,32	0,28	0,39	0,51	0,49	0,47	0,42	0,40	0,39	0,36	0,32	0,30	0,30	0,6
Schwimmende	% WLL	72	73	38	22	16	14	20	26	25	24	21	20	19	18	16	15	15	31
Max. Surfen relative STS	m	0,51	0,51	0,51	0,56	0,60	0,45	0,73	1,24	1,08	0,91	1,20	1,07	1,00	0,91	0,91	0,91	0,69	0,5
Max. Driften relative STS	m	0,73	0,79	0,54	0,42	0,37	0,36	0,54	0,83	0,79	0,74	0,95	0,81	0,77	0,71	0,79	0,72	0,44	0,4
Max. Tauchen relative STS	m	0,91	0,88	0,97	1,05	1,01	0,91	0,89	1,06	0,99	0,92	1,18	1,05	1,03	1,00	1,00	0,92	0,83	0,9
Verschiedene Kriterien	%	24	26	18	19	20	15	24	41	36	30	40	36	33	30	30	30	23	20

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 155 von 169

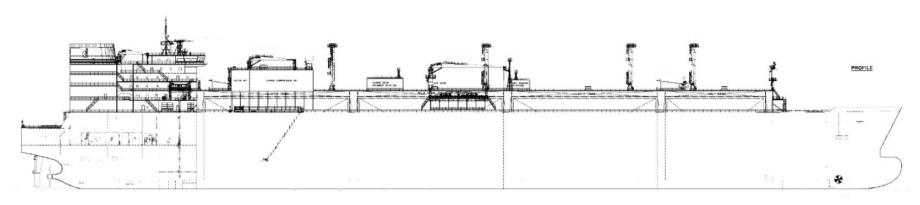
Anhang F Berechnungen der Anlegeenergie

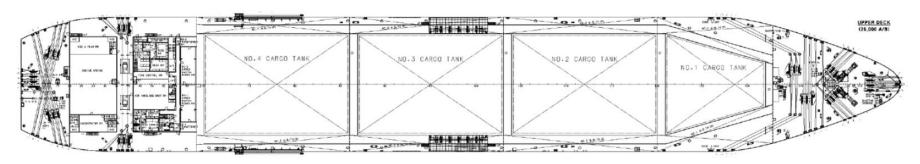
Coefficients											+
Softness coe	fficient	Cs.					Cs=	1	[-]		+
John ess coe	illololit	03.					03-		[-]		
deflection	Cs										
σF ≤ 150mm											
σF > 150mm			where:		σF is t	he deflection	of the fe	ender (r	mm)		Т
Berth configu	ration c	oefficie	nt Cc:								
01 1	14 /T	40.45	0.45				V /T	0.40			+
Structure		≤ 0.15					Kc/T=	0.19	[-]		+
Closed, α < ! Open	<u> </u>	0.9 1.0	1.0								+
Ореп		1.0	1.0								
Open							Cc=	1	[-]		†
Added mass	coeffici	ent Cm	:	Vasco	o Costa	1964	Kc/T >				+
2	$\times T$						Cm=	1.48	[-]		+
$C_m = 1 + \frac{2}{}$	В										+
Eccentricity	coefficia	ent Ca									+
							Ce=	0.90	[-]		+
$C_e = \frac{K^2 + I}{K^2}$	1 × cos	<u>y</u>									†
K	+ K*										
where:						ssel (m)					
	R is th	e dista	nce of p	point of	f contac	t to the centre	e of the	mass	(m)		
					city vec	tor and the lin	e betw	een the	point	of con	tact
	and the	e centre	e of ma	iss (°)							
Berthing mod	de:							05			
		\					e= v_	25			
		- e)				pacing outer RD	x=	118.0	m		
Berthing mod $x = \frac{L_{BP}}{2}$		-e)			S	pacing outer BD	x=		m		
$x = \frac{L_{BP}}{2}$	-(s/2)		2		S	pacing outer BD	x=	118.0 100.0	m m		
	-(s/2)		2)2		S	pacing outer BD	X= S=	118.0	m m		
$x = \frac{L_{BP}}{2}$	-(s/2)		2)2		S	pacing outer BD	X= S=	118.0 100.0	m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$	$-\left(\frac{s}{2}\right)$	+ (B/2	-				x= s= R=	118.0 100.0	m m m		
$x = \frac{L_{BP}}{2}$	$-\left(\frac{s}{2}\right)$	+ (B/2	-	assumir		pacing outer BD	x= s= R=	118.0 100.0 36.9	m m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$	$-\left(\frac{s}{2}\right)$ $\left(\frac{s}{2}-x\right)^{2}$ $(-asin)$	$+ \frac{(B/2)}{2 \times R}$	-)	assumir			x= s= R= γ=	118.0 100.0 36.9 42.44	m m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$	$-\left(\frac{s}{2}\right)$ $\left(\frac{s}{2}-x\right)^{2}$ $(-asin)$	$+ \frac{(B/2)}{2 \times R}$	-)	assumir			x= s= R=	118.0 100.0 36.9 42.44	m m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$	$-\left(\frac{s}{2}\right)$ $\left(\frac{s}{2}-x\right)^{2}$ $(-asin)$	$+ \frac{(B/2)}{2 \times R}$	-)	assumii			x= s= R= γ=	118.0 100.0 36.9 42.44	m m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 10^{\circ})$	$-\binom{s}{2}$ $\binom{s}{2} - x$ $-asin$ $C_B + 0$	$+ \frac{(B/2)}{2 \times R}$ $\frac{B}{2 \times R}$ $11) \times R$	-)	assumir			x= s= R= γ= K=	118.0 100.0 36.9 42.44	m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 10^{\circ})$	$-\binom{s}{2}$ $\binom{s}{2} - x$ $-asin$ $C_B + 0$	$+ \frac{(B/2)}{2 \times R}$ $\frac{B}{2 \times R}$ $11) \times R$	-)	assumir			x= s= R= γ=	118.0 100.0 36.9 42.44	m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$	$-\binom{s}{2}$ $\binom{s}{2} - x$ $-asin$ $C_B + 0$	$+ \frac{(B/2)}{2 \times R}$ $\frac{B}{2 \times R}$ $11) \times R$	-)	assumir			x= s= R= γ= K=	118.0 100.0 36.9 42.44	m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 10^{\circ})$	$-\left(\frac{s}{2}\right)^{2}$ $-asin$ $C_{B} + 0$ $\frac{M_{d}}{B \times T} > 0$	+ (B/2) + (B	L_{BP}	assumii			x= s= R= γ= K=	118.0 100.0 36.9 42.44	m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 10^{\circ})$ $C_B = \frac{1}{L_{BP} \times 10^{\circ}}$ where: Cb is	$-\left(\frac{s}{2}\right)^{2}$ $-asin$ $C_{B} + 0$ $\frac{M_{d}}{B \times T} > 0$	+ (B/2) + (B	L_{BP}	assumin			x= s= R= γ= K=	118.0 100.0 36.9 42.44	m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - a$ $K = (0.19 \times a)$ $C_B = \frac{1}{L_{BP} \times a}$ where: Cb is	$-\binom{s}{2}$ $(z-x)^{2}$ $(z-asin)$ $C_{B}+0$ M_{d} $B\times T \rightarrow$ the block	+ (B/2) + (B) L _{BP} icient	assumin			x= s= R= Y= K= Cb=	118.0 100.0 36.9 42.44 70.0	m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 10^{\circ})$ $C_B = \frac{1}{L_{BP} \times 10^{\circ}}$ where: Cb is	$-\binom{s}{2}$ $(z-x)^{2}$ $(z-asin)$ $C_{B}+0$ M_{d} $B\times T \rightarrow$ the block	+ (B/2) + (B) L _{BP} icient	assumin			x= s= R= γ= K=	118.0 100.0 36.9 42.44 70.0	m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - a$ $K = (0.19 \times a)$ $C_B = \frac{1}{L_{BP} \times a}$ where: Cb is salts: mal (Characteris	$-\binom{s}{2}$ $-\binom{s}{2} - x \choose 2 - x $ $- asin$ $C_B + 0$ M_d $B \times T >$ the block	+ (B/2) + (B	L _{BP}	assumin			x= s= R= y= K= Cb=	118.0 100.0 36.9 42.44 70.0 0.71	m m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - a$ $K = (0.19 \times a)$ $C_B = \frac{1}{L_{BP} \times a}$ where: Cb is	$-\binom{s}{2}$ $-\binom{s}{2} - x \choose 2 - x $ $- asin$ $C_B + 0$ M_d $B \times T >$ the block	+ (B/2) + (B	L _{BP}	assumin			x= s= R= Y= K= Cb=	118.0 100.0 36.9 42.44 70.0 0.71	m m		
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $y = 90^{\circ} - a$ $K = (0.19 \times a)$ $C_B = \frac{1}{L_{BP} \times a}$ where: Cb is sults: mal (Characteris normal (Design) by	$-\binom{s}{2}$ $-\binom{s}{2} - x \choose 2 - x $ $- asin$ $+ C_B + 0$ $+ M_d$ $+ B \times T \times$ $+ \text{the bloc}$	$+ (B/2)$ $(\frac{B}{2 \times R}$.11) × (ρ_w) kk coefficients of thing energy	L _{BP}	assumin			x= s= R= y= K= Cb=	118.0 100.0 36.9 42.44 70.0 0.71 1804 3608	m m m	1432	
$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - a$ $K = (0.19 \times a)$ $C_B = \frac{1}{L_{BP} \times a}$ where: Cb is salts: mal (Characteris	$-\left(\frac{s}{2}\right)^{2}$ $-asin$ $C_{B} + 0$ M_{d} $B \times T \times C_{B}$ the block berthing equation	$+ (B/2)$ $(\frac{B}{2 \times R}$.11) × (ρ_w) kk coefficients of thing energy	L _{BP}	assumin			x= s= R= y= K= Cb=	118.0 100.0 36.9 42.44 70.0 0.71	m m m m [-] kNm kNm	1433(Conc	



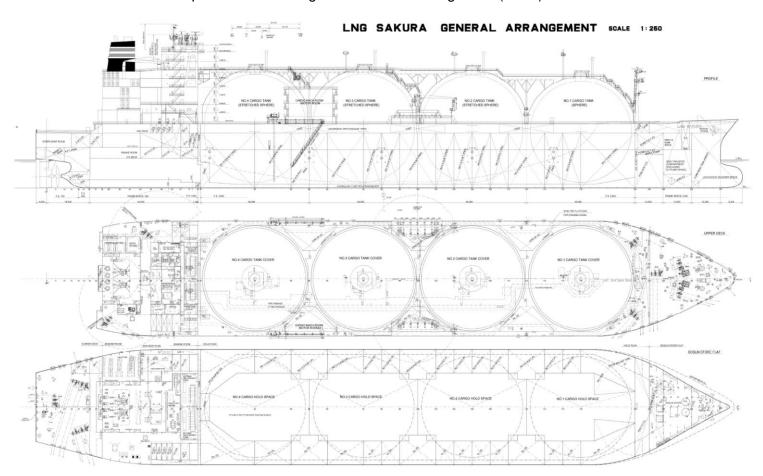
	otions:											
0"												
	ficients Softness coe	fficient	Cor					Co-	1	r 1		-
- 3	Sollness coe	illicient	US:					Cs=	1	[-]		-
_	deflection	Cs										+
-	oF ≤ 150mm											
	oF > 150mm	_		where:		σF is	the deflection	of the fe	ender (r	mm)		
-						00				,		
E	Berth configu	ration c	oefficie	nt Cc:								
,	Structure	Kc/T	≤ 0.15	> 0.15				Kc/T=	0.19	[-]		
C	Closed, α < 5	5	0.9	1.0								
C	Open		1.0	1.0								
(Open							Cc=	1	[-]		
	۸ ماهام ما :		ant O		1/	0	1004	Ve/T	0.4			+
F	Added mass	coeffici	ent Cm		vasc	o Costa	1904	Kc/T >		F 1	-	+
	$C_m = 1 + \frac{2}{}$	$\times T$						Cm=	1.48	[-]		+
	C _m - 1 + -	В										+
F	Eccentricity (coefficie	ent Ce.									+
								Ce=	0.99	[-]		
	$C_e = \frac{K^2 + R}{K^2}$	1 × cos	<i>y</i>									
	K.	2 + R2										
v	where:	K is th	e radiu	s of gy	ration	of the ve	essel (m)					
		R is th	e dista	nce of	point c	of contac	ct to the cent	re of the	mass	(m)		
				betwe	en veld		ctor and the I				of con	tact
E	Berthing mod	and the	e angle	betwe	en veld				een the	point	of con	tact
		and the	e angle e centr	betwe	en veld			ne betw	een the	point m	of con	tact
	Serthing mod $x = \frac{L_{BP}}{2}$	and the	e angle e centr	betwe	en veld	ocity ved		e=	een the	m m	of con	tact
	$x = \frac{L_{BP}}{2}$	and the de: $-\binom{s}{2}$	e angle e centr - e)	betwe e of ma	en veld	ocity ved	ctor and the I	e=	40 133.0	m m	of con	tact
		and the de: $-\binom{s}{2}$	e angle e centr - e)	betwe e of ma	en veld	ocity ved	ctor and the I	e=	40 133.0 100.0	m m m	of con	tact
	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\left(\frac{L_{BP}}{2}\right)}$	and the de: $-\left(\frac{s}{2}\right)^{2}$	e angle e centre $-e$ $+(B/2)$	betwee of ma	en veld	ocity ved	ctor and the I	e= x= x= R=	40 133.0 100.0 26.4	m m m	of con	tact
	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\left(\frac{L_{BP}}{2}\right)}$	and the de: $-\left(\frac{s}{2}\right)^{2}$	e angle e centre $-e$ $+(B/2)$	betwee of ma	en veldass (°)	city ved	ctor and the I	e= x= x= R=	40 133.0 100.0	m m m	of con	tact
	$x = \frac{L_{BP}}{2}$	and the de: $-\left(\frac{s}{2}\right)^{2}$	e angle e centre $-e$ $+(B/2)$	betwee of ma	en veldass (°)	city ved	ctor and the I	e= x= x= R=	40 133.0 100.0 26.4	m m m	of con	tact
	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\left(\frac{L_{BP}}{2}\right)}$ $\gamma = 90^{\circ} - \alpha$	and the de: $-\frac{(s/2)}{(z-x)^2}$ $-\frac{(s/2)}{(z-x)^2}$	e angle e centre $-e$ $+ (B/2)$ $\left(\frac{B}{2 \times R}\right)$	betwee of ma	en veldass (°)	city ved	ctor and the I	e= x= x= x= x= x= y=	40 133.0 100.0 26.4	m m m	of con	tact
	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\left(\frac{L_{BP}}{2}\right)}$	and the de: $-\frac{(s/2)}{(z-x)^2}$ $-\frac{(s/2)}{(z-x)^2}$	e angle e centre $-e$ $+ (B/2)$ $\left(\frac{B}{2 \times R}\right)$	betwee of ma	en veldass (°)	city ved	ctor and the I	e= x= x= R=	40 133.0 100.0 26.4	m m m	of con	tact
	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\left(\frac{L_{BP}}{2}\right)}$ $\gamma = 90^{\circ} - \alpha$	and the de: $-\frac{(s/2)}{(z-x)^2}$ $-\frac{(s/2)}{(z-x)^2}$	e angle e centre $-e$ $+ (B/2)$ $\left(\frac{B}{2 \times R}\right)$	betwee of ma	en veldass (°)	city ved	ctor and the I	e= x= x= x= x= x= y=	40 133.0 100.0 26.4	m m m	of con	tact
	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 10^{\circ})$	and the de: $-\frac{\left(s/2\right)}{\left(z-x\right)^{2}}$ $-asin$ $C_{B}+0$	e angle e centro $-e$ $+ (B/2)$ $(\frac{B}{2 \times R})$.11) ×	betwee of ma	en veldass (°)	city ved	ctor and the I	e= x= x= x= x= x= y=	40 133.0 100.0 26.4 16.24	m m m	of con	tact
	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 10^{\circ})$	and the de: $-\frac{\left(s/2\right)}{\left(z-x\right)^{2}}$ $-asin$ $C_{B}+0$	e angle e centro $-e$ $+ (B/2)$ $(\frac{B}{2 \times R})$.11) ×	betwee of ma	en veldass (°)	city ved	ctor and the I	e= x= x= x= x= x= x= x= x=	40 133.0 100.0 26.4 16.24	m m m	of con	tact
	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 10^{\circ})$ $C_B = \frac{1}{L_{BP}} \times 10^{\circ}$	and the de: $-\left(\frac{s}{2}\right)^{2}$ $-asin$ $C_{B}+0$ $\frac{M_{d}}{B\times T}$	e angle e centro $-e$ $+(B/2)$	betwee a of mass $\left(\frac{1}{2}\right)^2$	en veldass (°)	city ved	ctor and the I	e= x= x= x= x= x= x= x= x=	40 133.0 100.0 26.4 16.24	m m m	of con	tact
	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 10^{\circ})$	and the de: $-\left(\frac{s}{2}\right)^{2}$ $-asin$ $C_{B}+0$ $\frac{M_{d}}{B\times T}$	e angle e centro $-e$ $+(B/2)$	betwee a of mass $\left(\frac{1}{2}\right)^2$	en veldass (°)	city ved	ctor and the I	e= x= x= x= x= x= x= x= x=	40 133.0 100.0 26.4 16.24	m m m	of con	tact
	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 10^{\circ})$ $C_B = \frac{L_{BP}}{2} \times 10^{\circ}$ where: Cb is	and the de: $-\left(\frac{s}{2}\right)^{2}$ $-asin$ $C_{B}+0$ $\frac{M_{d}}{B\times T}$	e angle e centro $-e$ $+(B/2)$	betwee a of mass $\left(\frac{1}{2}\right)^2$	en veldass (°)	city ved	ctor and the I	e= x= x= x= x= x= x= x= x=	40 133.0 100.0 26.4 16.24	m m m	of con	tact
v	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 10^{\circ})$ $C_B = \frac{L_{BP}}{2} \times 10^{\circ}$ where: Cb is	and the set of the se	e angle e centro $-e$ $+(B/2)$	betwee of ma	en veldass (°)	city ved	ctor and the I	e= x= x= x= x= x= x= x= x=	40 133.0 100.0 26.4 70.0	m m m	of con	tact
v v	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 10^{\circ})$ $C_B = \frac{1}{L_{BP} \times 10^{\circ}}$ Where: Cb is	and the determinant $C_B + 0$ and $C_B + 0$ the block tic) bert	e angle e centre $-e$ $+(B/2)$	betwee a of many of ma	en veldass (°)	city ved	ctor and the I	e= x= c s= K= Cb=	40 133.0 100.0 26.4 70.0 0.71	m m m m [-]	of con	tact
v v v v v v v v v v v v v v v v v v v	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $y = 90^{\circ} - \alpha$ $K = (0.19 \times 2)$ $C_B = \frac{1}{L_{BP} \times 2}$ $K = (0.19 \times 2)$ $K = (0$	and the de:	e angle e centro $-e$ $+(B/2)$	betwee a of many of ma	en veldass (°)	city ved	ctor and the I	e= x= cb= Cb=	40 133.0 100.0 26.4 70.0 0.71	m m m m [-]		
V Results Normal Abnorm	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $\gamma = 90^{\circ} - \alpha$ $K = (0.19 \times 2)$ $C_B = \frac{L_{BP} \times 2}{2}$ $K = (0.19 \times 2)$ $K = (0$	and the de:	e angle e centro $-e$ $+(B/2)$	betwee a of many of ma	en veldass (°)	city ved	ctor and the I	e= x= cb= Cb=	40 133.0 100.0 26.4 16.24 70.0 0.71	m m m m m m [-]	1433	00
v v v v v v v v v v v v v v v v v v v	$x = \frac{L_{BP}}{2}$ $R = \sqrt{\frac{L_{BP}}{2}}$ $y = 90^{\circ} - \alpha$ $K = (0.19 \times 2)$ $C_B = \frac{1}{L_{BP} \times 2}$ $K = (0.19 \times 2)$ $K = (0$	and the de:	e angle e centro $-e$ $+(B/2)$	betwee a of many of ma	en veldass (°)	city ved	ctor and the I	e= x= cb= Cb=	40 133.0 100.0 26.4 70.0 0.71	m m m m m m [-]		DO DO eept

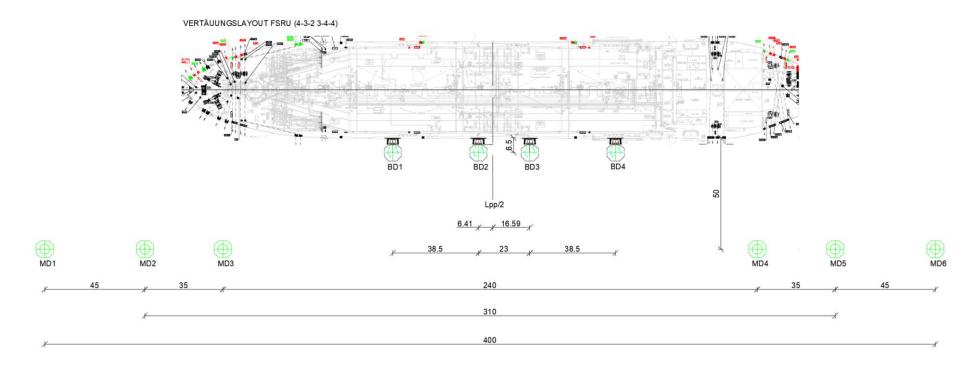
ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 157 von 169


Anhang G Dispositionszeichnung und vertäuanordnungen


Dispositionszeichnung FSRU Excelsior

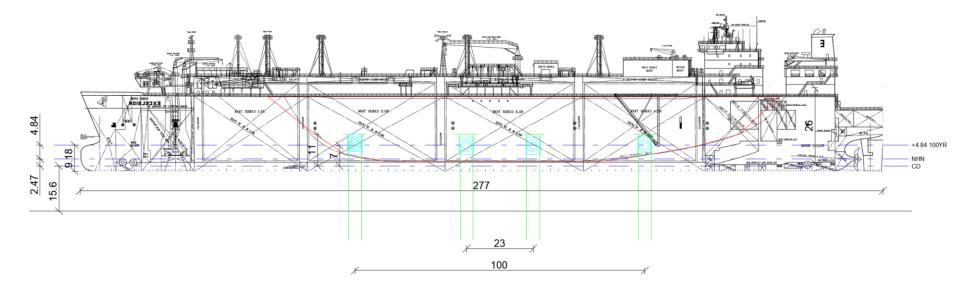
ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 158 von 169


Dispositionszeichnung LNG-Tanker mit Membrantank 170 Tsd

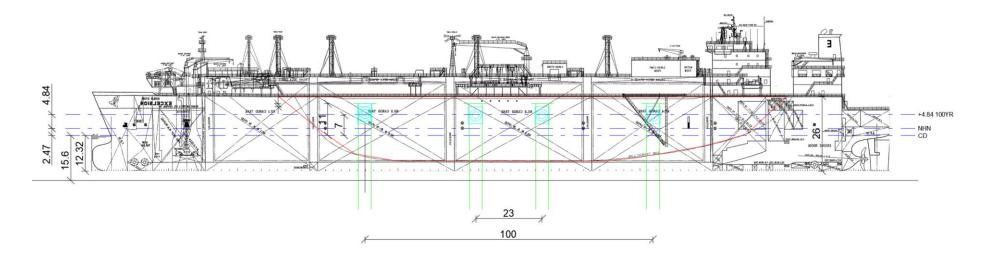


ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 159 von 169

Dispositionszeichnung LNG-Tanker mit Kugeltank (Moss) 177 Tsd

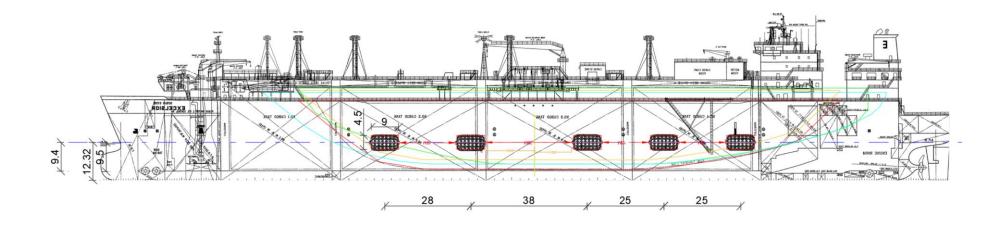


ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 160 von 169


ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV-DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 161 von 169

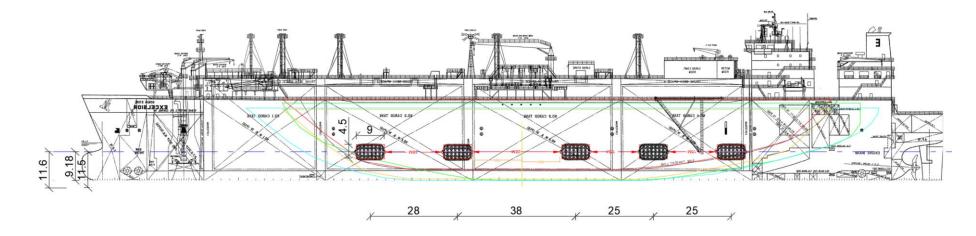
BALLASTIERTEN FSRU 100-JAHRES-TWL

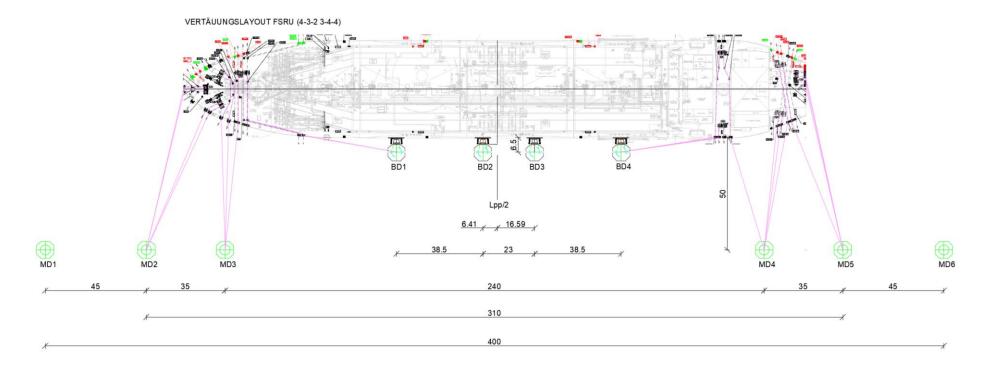
ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 162 von 169


BELADENEN FSRU CD

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 163 von 169

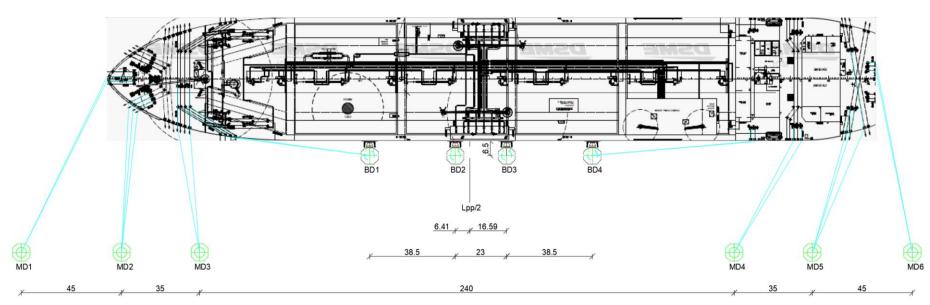
Flachen seite 177k Moss LNGC
Flachen seite 170k Membrane LNGC
Flachen seite 138k Membrane LNGC
Flachen seite FSRU


Beladenen FSRU Ballastierten LNGC

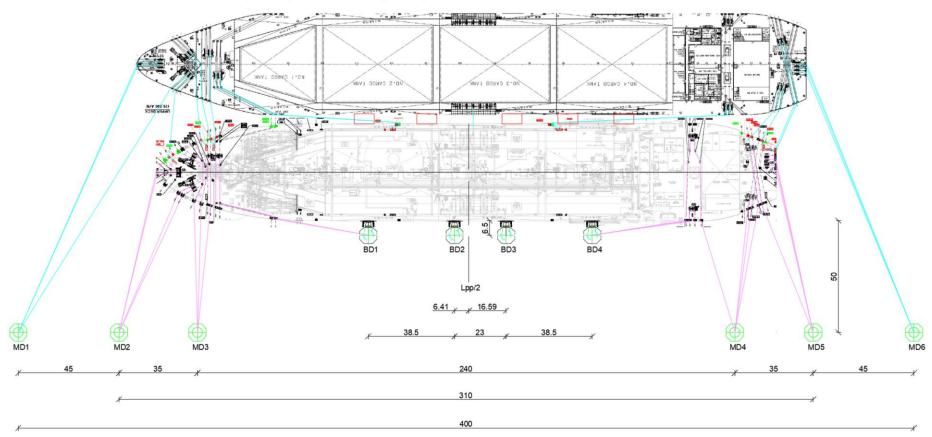

IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 164 von 169

Flachen seite 177k Moss LNGC
Flachen seite 170k Membrane LNGC
Flachen seite 138k Membrane LNGC
Flachen seite FSRU

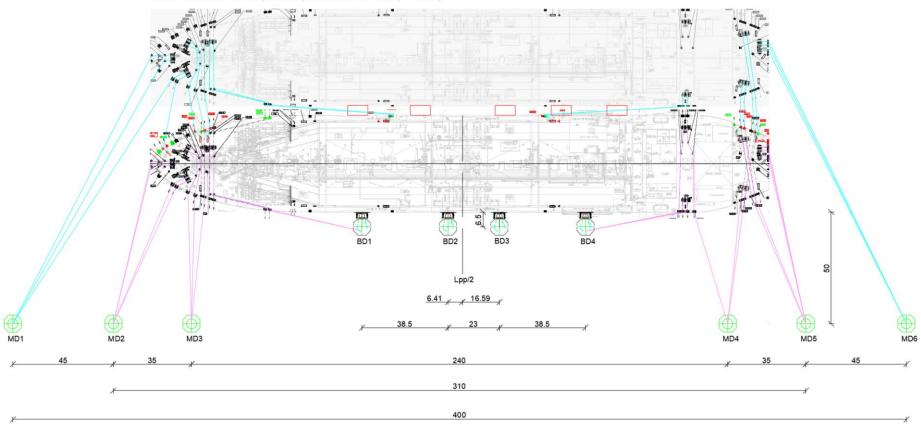
Ballastierten FSRU Beladenen LNGC



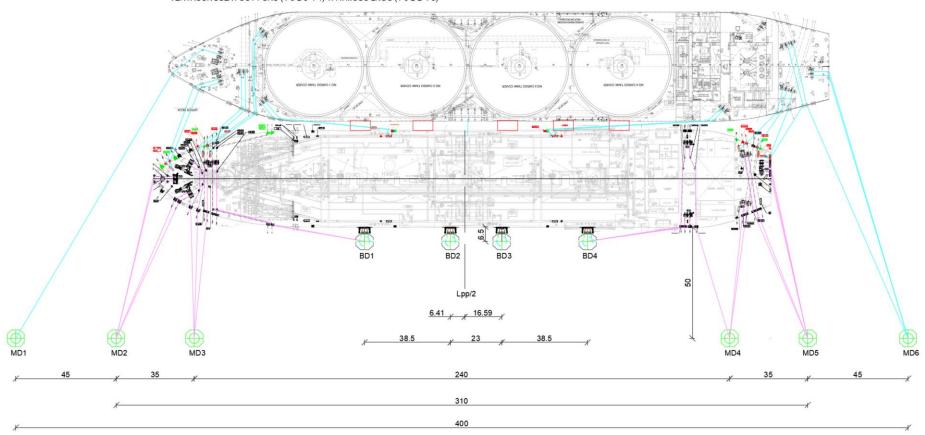
IMDC TRACTEBEL SECONNECT SEXCELERATE Energy	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 165 von 169


ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 166 von 169

Vertäuanordnung Q-Max


IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 167 von 169

VERTÄUUNGSLAYOUT FSRU (4-3-2 3-4-4) 170k MEMBRANE LNGC (3-4-2 2-4-3)


IMDC TRACTEBEL SECONNECT SEXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 168 von 169

ECONNECT EXCELERATE ENERGY	Umgebung	OTES engie
TES-Proj Nr.: TES-WHV-VGN	FSRU Wilhelmshaven: Vertäustudie	Dok Nr.: TES-WHV-VGN-FSRU-ENV- DOC.2021_05
TES-Code: TES-WHV-VGN-FSRU		Seite 169 von 169

VERTÄUUNGSLAYOUT FSRU (4-3-2 3-4-4) 177k MOSS LNGC (1-6-2 2-4-3)

